Introduction of Network Science and Graph Theory Network Science and Graph Theory are dynamic interdisciplinary fields that have gained immense significance in various domains, from social networks to biology and
Introduction of Graph Data Structures and Algorithms Graph data structures and algorithms are fundamental components of computer science, powering a wide range of applications in fields such as social
Introduction to Network Properties and Measures Networks are pervasive in our modern world, representing a diverse array of systems, from social networks and transportation networks to biological networks. Understanding the
Introduction to Random Graph Models and Network Generative Models Random graph models and network generative models are powerful tools in network science and graph theory. They provide a framework
Introduction to Small World Networks and Scale-Free Networks Small world networks and scale-free networks are two prominent classes of complex networks that have garnered significant attention in the field of
Introduction to Centrality Measures and Network Flow Analysis Centrality measures and network flow analysis are fundamental concepts in network science and graph theory. They play a pivotal role in understanding
Community Detection and Graph Partitioning Introduction to Community Detection and Graph Partitioning Community detection and graph partitioning are vital tasks in network science and graph theory. They focus on uncovering
Community Detection and Graph Partitioning Introduction to Link Prediction and Recommender Systems Link prediction and recommender systems are critical components of network science and data-driven decision-making. Link prediction deals with
Community Detection and Graph Partitioning Introduction to Diffusion and Information Cascades in Networks: Diffusion and information cascades are phenomena that occur in various networked systems, including social networks, communication networks,
Introduction to Network Resilience and Robustness Network resilience and robustness are critical aspects of network science and engineering. They involve the study of a network's ability to withstand disruptions, failures,