Yu Sha | Deep Learning | Best Researcher Award

Dr. Yu Sha | Deep Learning | Best Researcher Award

Yu Sha at Xidian University, China.

Yu Sha is a doctoral researcher specializing in artificial intelligence applications for cavitation detection and intensity recognition. He is pursuing a Doctor of Engineering at Xidian University, China, and was a visiting PhD student at the Frankfurt Institute for Advanced Studies, Germany. His research focuses on AI-driven fault detection in industrial systems, with multiple publications, patents, and academic honors to his name.

Professional Profile:

Scopus

Google Scholar

Education Background

1.Β  Xidian University, China (2019 – Present)

    • Ph.D. in Computer Science and Technology (College of Artificial Intelligence)
    • Research Focus: Cavitation detection and intensity recognition via deep learning
    • Anticipated Graduation: June 2024

2.Β  Frankfurt Institute for Advanced Studies, Germany (2020 – 2022)

    • Visiting PhD Researcher (Cavitation and leakage detection using AI)

3.Β  Lanzhou University of Technology, China (2015 – 2019)

    • B.Sc. in Information and Computing Science
    • Ranked 1st out of 54 students

Professional Development

Yu Sha has contributed to multiple research projects at Xidian University, including AI-driven battlefield situation analysis and decision-making. His work at the Frankfurt Institute for Advanced Studies focused on AI-based cavitation and leakage detection in large-scale pump and pipeline systems. His research expertise extends to deep learning, fault diagnosis in industrial systems, and reinforcement learning.

Research Focus

  • AI-driven cavitation detection and intensity recognition
  • Fault diagnosis and predictive maintenance in industrial systems
  • Deep learning and reinforcement learning applications in engineering

Author Metrics:

  • Publications: Articles accepted in high-impact journals like Machine Intelligence Research and Mechanical Systems and Signal Processing.
  • Conferences: Research presented at ACM SIGKDD and other international venues.
  • Patents: Multiple invention patents related to cavitation detection, face aging estimation, and heart rate estimation

Awards and Honors:

  • Outstanding Doctoral Student, Xidian University (2021, 2022)
  • Multiple Graduate Student Academic Scholarships (First & Second Level)
  • National Encouragement Scholarship (2016, 2017)
  • First Prize in multiple mathematical modeling and AI competitions, including MCM/ICM, MathorCup, and Teddy Cup Data Mining Challenge

Publication Top Notes

1. A Multi-Task Learning for Cavitation Detection and Cavitation Intensity Recognition of Valve Acoustic Signals

  • Authors: Yu Sha, Johannes Faber, Shuiping Gou, Bo Liu, Wei Li, Stefan Schramm, Horst Stoecker, Thomas Steckenreiter, Domagoj Vnucec, Nadine Wetzstein, Andreas Widl, Kai Zhou
  • Published In: Engineering Applications of Artificial Intelligence, Volume 113, August 2022, Article 104904
  • DOI: 10.1016/j.engappai.2022.104904
  • Publisher: Elsevier Ltd.
  • Abstract: The paper proposes a novel multi-task learning framework using 1-D double hierarchical residual networks (1-D DHRN) for simultaneous cavitation detection and cavitation intensity recognition in valve acoustic signals. The approach addresses challenges such as limited sample sizes and poor separability of cavitation states by employing data augmentation techniques and advanced neural network architectures. The framework demonstrated high prediction accuracies across multiple datasets, outperforming other deep learning models and conventional methods.
  • Access: The full paper is available at https://www.sciencedirect.com/science/article/pii/S0952197622001361

2. An Acoustic Signal Cavitation Detection Framework Based on XGBoost with Adaptive Selection Feature Engineering

  • Authors: Yu Sha, Johannes Faber, Shuiping Gou, Bo Liu, Wei Li, Stefan Schramm, Horst Stoecker, Thomas Steckenreiter, Domagoj Vnucec, Nadine Wetzstein, Andreas Widl, Kai Zhou
  • Published In: Measurement, Volume 192, June 2022, Article 110897
  • DOI: 10.1016/j.measurement.2022.110897
  • Publisher: Elsevier Ltd.
  • Abstract: This study introduces a framework combining XGBoost with adaptive selection feature engineering (ASFE) for detecting cavitation in valves using acoustic signals. The methodology includes data augmentation through a non-overlapping sliding window, feature extraction using fast Fourier transform (FFT), and adaptive feature engineering to enhance input features for the XGBoost algorithm. The framework achieved satisfactory prediction performance in both binary and four-class classifications, outperforming traditional XGBoost models.
  • Access: The full paper is available at https://www.sciencedirect.com/science/article/pii/S0263224122001798

3. Regional-Local Adversarially Learned One-Class Classifier Anomalous Sound Detection in Global Long-Term Space

  • Authors: Yu Sha, Shuiping Gou, Johannes Faber, Bo Liu, Wei Li, Stefan Schramm, Horst Stoecker, Thomas Steckenreiter, Domagoj Vnucec, Nadine Wetzstein, Andreas Widl, Kai Zhou
  • Published In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, August 2022
  • DOI: 10.1145/3534678.3539133
  • Publisher: Association for Computing Machinery (ACM)
  • Abstract: This paper introduces a multi-pattern adversarial learning one-class classification framework for anomalous sound detection (ASD) in mechanical equipment monitoring. The framework utilizes two auto-encoding generators to reconstruct normal acoustic data patterns, extending the discriminator’s role to distinguish between regional and local pattern reconstructions. A global filter layer is also presented to capture long-term interactions in the frequency domain without human priors. The proposed method demonstrated superior performance on four real-world datasets from different industrial domains, outperforming recent state-of-the-art ASD methods.
  • Access: The full paper is available at https://dl.acm.org/doi/10.1145/3534678.3539133

4. A Study on Small Magnitude Seismic Phase Identification Using 1D Deep Residual Neural Network

  • Authors: Wei Li, Megha Chakraborty, Yu Sha, Kai Zhou, Johannes Faber, Georg RΓΌmpker, Horst StΓΆcker, Nishtha Srivastava
  • Published In: Artificial Intelligence in Geosciences, Volume 3, December 2022, Pages 115-122
  • DOI: 10.1016/j.aiig.2022.10.002
  • Publisher: KeAi Publishing Communications Ltd.
  • Abstract: This study develops a 1D deep Residual Neural Network (ResNet) to address the challenges of seismic signal detection and phase identification, particularly for small magnitude events or signals with low signal-to-noise ratios. The proposed method was trained and tested on datasets from the Southern California Seismic Network, demonstrating high accuracy and robustness in identifying seismic phases, thereby offering a valuable tool for seismic monitoring and analysis.
  • Access: The full paper is available at https://www.sciencedirect.com/science/article/pii/S2666544122000284

5. Deep Learning-Based Small Magnitude Earthquake Detection and Seismic Phase Classification

  • Authors: Wei Li, Yu Sha, Kai Zhou, Johannes Faber, Georg Ruempker, Horst Stoecker, Nishtha Srivastava
  • Published In: arXiv preprint arXiv:2204.02870, April 2022
  • DOI: N/A
  • Publisher: arXiv
  • Abstract: This paper investigates two deep learning-based models, namely 1D

Conclusion

Dr. Yu Sha is a highly deserving candidate for the Best Researcher Award due to his pioneering contributions to AI-driven cavitation detection, deep learning applications, and fault diagnosis in industrial systems. His strong academic record, international exposure, high-impact publications, and patent portfolio make him a standout researcher in deep learning for industrial applications. With further industry collaborations and expanded leadership roles, he could solidify his reputation as a global leader in AI-based fault detection.

Junbin zhuang | Deep Learning | Best Researcher Award

Mr. junbin zhuang | Deep Learning | Best Researcher Award

PhD at xidian Unviersity, China.

Zhuang Junbin (εΊ„δΏŠε½¬) is a dedicated researcher specializing in deep learning and image processing πŸ§ πŸ“·. Born in 1993, he is currently pursuing a Ph.D. at Xi’an University of Electronic Science and Technology πŸŽ“, focusing on computer vision, multi-sensor information fusion, and superpixel segmentation. With over 10+ SCI/EI-indexed papers πŸ†, multiple patents, and involvement in national and industrial projects, he has significantly contributed to remote sensing, infrared imaging, and intelligent scene perception πŸš€. His research has been published in top-tier journals, reflecting his innovative approach to AI-powered image analysis.

Professional Profile:

ORCID Profile

Suitability for Best Researcher Award

Dr. Zhuang Junbin is a highly qualified candidate for the Best Researcher Award, given his extensive contributions to deep learning, image processing, and multi-sensor information fusion. His strong publication record, leadership in national and industrial research projects, and intellectual property contributions make him an outstanding researcher in his field.

Education & Experience πŸŽ“πŸ’Ό

πŸ“Œ Ph.D. in Instrument Science & Technology – Xi’an University of Electronic Science and Technology (2019 – Present)
πŸ“Œ M.Sc. in Control Science & Engineering – Harbin Engineering University (2018 – 2019)
πŸ“Œ Lead Researcher – AI-driven superpixel segmentation & multi-sensor fusion projects
πŸ“Œ Project Leader – Space scene perception & infrared target detection
πŸ“Œ Published 10+ SCI/EI Papers – IEEE, Remote Sensing, Top AI journals
πŸ“Œ Patents & Software – 5+ intellectual property contributions

Professional Development πŸš€πŸ“–

Zhuang Junbin has led multiple research projects focusing on multi-source information fusion, remote sensing image analysis, and AI-based vision enhancement πŸ”¬. He has designed and deployed novel algorithms for superpixel segmentation, infrared detection, and underwater image enhancement πŸŒŠπŸ“‘. His leadership in national defense, aerospace, and AI-driven perception systems has resulted in cutting-edge innovations in sensor fusion and intelligent imaging πŸ›°οΈπŸ”. His work is instrumental in military applications, satellite technology, and remote sensing automation, demonstrating his commitment to bridging AI with real-world challenges πŸŒπŸ€–.

Research Focus πŸ”¬πŸ“Š

Zhuang Junbin’s research primarily revolves around deep learning-driven image processing and multi-sensor data fusion πŸ–₯οΈπŸ”. His work includes:
πŸ“Œ Superpixel Segmentation – Advanced algorithms for precise image segmentation and boundary awareness 🏞️🧩
πŸ“Œ Remote Sensing & AI – Developing models for satellite image analysis, terrain classification, and geospatial intelligence πŸ›°οΈπŸŒ
πŸ“Œ Infrared Object Detection – Enhancing military and defense imaging systems for real-time surveillance 🎯πŸ”₯
πŸ“Œ Underwater Image Enhancement – AI-based dehazing and color restoration for deep-sea exploration 🐠🌊
πŸ“Œ Multi-Domain Image Fusion – Integrating visible, infrared, and remote sensing data for superior image clarity πŸ“‘πŸ“·

Awards & Honors πŸ†πŸŽ–οΈ

πŸ… Top-Tier Publications – Published in IEEE Transactions, Remote Sensing (SCI Q1-Q2, IF 8.3, 5.3, 3.4)
πŸ… National Research Grants – Contributor to National Natural Science Foundation projects
πŸ… Industrial Collaboration – Led defense and aerospace AI projects for space and military applications πŸš€
πŸ… Innovation Patents & Software – 5+ patents and software copyrights in computer vision & AI
πŸ… Best Research Project Leadership – Recognized for leading high-impact AI research in multi-sensor fusion 🎯

Publication Top Notes

  • “Band Selection Algorithm Based on Multi-Feature and Affinity Propagation Clustering”

    • Authors: Junbin Zhuang, Wenying Chen, Xunan Huang, Yunyi Yan​
    • Year: 2025​
  • “Globally Deformable Information Selection Transformer for Underwater Image Enhancement”

    • Authors: Junbin Zhuang, Yan Zheng, Baolong Guo, Yunyi Yan​​​
  • “HIFI-Net: A Novel Network for Enhancement to Underwater Optical Images”

    • Authors: Jiajia Zhou, Junbin Zhuang, Yan Zheng, Yasheng Chang, Suleman Mazhar​
    • Year: 2024​​
  • “Infrared Weak Target Detection in Dual Images and Dual Areas”

    • Authors: Junbin Zhuang, Wenying Chen, Baolong Guo, Yunyi Yan​
    • Year: 2024​​
  • “Area Contrast Distribution Loss for Underwater Image Enhancement”

    • Authors: Jiajia Zhou, Junbin Zhuang, Yan Zheng, Juan Li​
    • Year: 2023
  • “Research on Underwater Image Recognition Based on Transfer Learning”

    • Authors: Jiajia Zhou, Junbin Zhuang, Benyin Li, Liang Zhou​
    • Year: 2022​