Zhi Gao | Vision-Language Models | Best Researcher Award

Dr. Zhi Gao | Vision-Language Models | Best Researcher Award

Postdoctoral Research Fellow at Peking University, China.

Dr. Zhi Gao is a Postdoctoral Research Fellow at the School of Intelligence Science and Technology, Peking University. His research focuses on multimodal learning, vision-language models, and human-robot interaction. With expertise in computer vision and machine learning, he explores the development of intelligent agents capable of understanding and interacting with complex environments.

Professional Profile:

Google Scholar Profile

Education Background 🎓📖

  • Ph.D. in Computer Science and Technology, Beijing Institute of Technology (2018–2023)
  • Master in Computer Science and Technology, Beijing Institute of Technology (2017–2018)
  • B.S. in Computer Science and Technology, Beijing Institute of Technology (2013–2017)

Professional Development 📈💡

Dr. Gao is currently a Postdoctoral Research Fellow at Peking University under the supervision of Prof. Song-Chun Zhu, focusing on multimodal learning and agent development. Concurrently, he serves as a Research Scientist at the Beijing Institute for General Artificial Intelligence, working on vision-language models in the Machine Learning Lab. His research integrates deep learning, data representation, and human-centered AI to enhance machine perception and reasoning.

Research Focus 🔬📖

His work spans computer vision and machine learning, particularly in developing multimodal agents capable of learning from human-robot interactions and adapting to dynamic environments. He is also interested in leveraging the geometry of data space to address challenges such as insufficient annotations and distribution shifts.

Author Metrics

  • Publications in top-tier AI and computer vision conferences and journals
  • Research contributions in multimodal intelligence, vision-language understanding, and AI-driven reasoning

Awards & Honors 🏆🎖️

  • National Science Foundation for Young Scientists of China (2025–2027) for research on Riemannian multimodal large language models for video understanding
  • Distinguished Dissertation Award from SIGAI CHINA (October 202X)

Publication Top Notes

1. A Hyperbolic-to-Hyperbolic Graph Convolutional Network

Authors: Jindou Dai, Yuwei Wu, Zhi Gao, Yunde Jia
Published in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 154-163
Abstract: This paper introduces a hyperbolic-to-hyperbolic graph convolutional network (H2H-GCN) that operates directly on hyperbolic manifolds. The proposed method includes a manifold-preserving graph convolution with hyperbolic feature transformation and neighborhood aggregation, avoiding distortions from tangent space approximations. Extensive experiments demonstrate substantial improvements in tasks such as link prediction, node classification, and graph classification.

2. Curvature Generation in Curved Spaces for Few-Shot Learning

Authors: Zhi Gao, Yuwei Wu, Yunde Jia, Mehrtash Harandi
Published in: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 8671-8680
Abstract: This research addresses few-shot learning by proposing task-aware curved embedding spaces using hyperbolic geometry. By generating task-specific embedding spaces with appropriate curvatures, the method enhances the generality of embeddings. The study leverages intra-class and inter-class context information to create discriminative class prototypes, showing benefits over existing embedding methods in both inductive and transductive few-shot learning scenarios.

3. Deep Convolutional Network with Locality and Sparsity Constraints for Texture Classification

Authors: Xiaoyu Bu, Yuwei Wu, Zhi Gao, Yunde Jia
Published in: Pattern Recognition, Volume 91, 2019, Pages 34-46
Abstract: This paper presents a deep convolutional network incorporating locality and sparsity constraints to improve texture classification. The proposed model enhances feature representation by enforcing local connectivity and sparse activation, leading to improved classification performance on texture datasets.

4. Meta-Causal Learning for Single Domain Generalization

Authors: Jianlong Chen, Zhi Gao, Xiaodan Wu, Jiebo Luo
Published in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023
Abstract: The study introduces a meta-causal learning framework aimed at enhancing generalization in single-domain settings. By leveraging causal relationships within the data, the approach seeks to improve model robustness when applied to unseen domains, addressing challenges in domain generalization.

5. A Robust Distance Measure for Similarity-Based Classification on the SPD Manifold

Authors: Zhi Gao, Yuwei Wu, Mehrtash Harandi, Yunde Jia
Published in: IEEE Transactions on Neural Networks and Learning Systems, Volume 31, Issue 9, 2019, Pages 3230-3244
Abstract: This research proposes a robust distance measure tailored for similarity-based classification tasks on the Symmetric Positive Definite (SPD) manifold. The developed measure enhances classification accuracy by effectively capturing the intrinsic geometry of the SPD manifold, demonstrating robustness in various similarity-based classification scenarios.

Conclusion:

Dr. Zhi Gao is a strong candidate for the Best Researcher Award, given his groundbreaking contributions in vision-language models, hyperbolic learning, and multimodal AI. His strong academic background, top-tier publications, and national recognition make him a well-qualified nominee. However, to further strengthen his impact, he could focus on industry collaborations, real-world AI applications, and global AI leadership.

Verdict:Highly suitable for the Best Researcher Award with minor areas of improvement for long-term impact.

Dongfang Zhao | Machine Learning | Best Researcher Award

Prof. Dongfang Zhao | Machine Learning | Best Researcher Award

Prof. Dongfang Zhao at University of Washington, United States

🌟 Dongfang Zhao, Ph.D., is a Tenure-Track Assistant Professor at the University of Washington Tacoma and a Data Science Affiliate at the eScience Institute. With a Ph.D. in Computer Science from Illinois Institute of Technology (2015) and PostDoc from the University of Washington, Seattle (2017), Dr. Zhao’s career spans academic excellence and groundbreaking research in distributed systems, blockchain, and machine learning. His work, recognized with federal grants and best paper awards, has significantly impacted cloud computing, HPC systems, and AI-driven blockchain solutions. Dr. Zhao is an influential editor, reviewer, and committee member in prestigious venues. 📚💻✨

Professional Profile:

Google Scholar

Orcid

Education and Experience 

🎓 Education:

  • Postdoctoral Fellowship, Computer Science, University of Washington, Seattle (2017)
  • Ph.D., Computer Science, Illinois Institute of Technology, Chicago (2015)
  • M.S., Computer Science, Emory University, Atlanta (2008)
  • Diploma in Statistics, Katholieke Universiteit Leuven, Belgium (2005)

💼 Experience:

  • Tenure-Track Assistant Professor, University of Washington Tacoma (2023–Present)
  • Visiting Professor, University of California, Davis (2018–2023)
  • Assistant Professor, University of Nevada, Reno (2017–2023)
  • Visiting Scholar, University of California, Berkeley (2016)
  • Research Intern, IBM Almaden Research Center (2015), Argonne National Laboratory (2014), Pacific Northwest National Laboratory (2013)

Professional Development

📊 Dr. Dongfang Zhao is a leading voice in distributed systems, blockchain technologies, and scalable machine learning. He contributes to academia as an Associate Editor for the Journal of Big Data and serves on the editorial board of IEEE Transactions on Distributed and Parallel Systems. A sought-after reviewer and conference organizer, Dr. Zhao actively shapes the future of AI and cloud computing. With a deep commitment to mentorship, he has guided doctoral students to successful careers in academia and industry. His collaborative initiatives reflect a passion for addressing real-world challenges through computational innovation. 🌐✨📖

Research Focus

🔬 Dr. Zhao’s research emphasizes cutting-edge developments in distributed systems, blockchain, machine learning, and HPC (high-performance computing). His work delves into creating energy-efficient, scalable blockchain platforms like HPChain and developing frameworks for efficient scientific data handling. His contributions include lightweight blockchain solutions for reproducible computing and innovations in AI-driven systems like HDK for deep-learning-based analyses. Dr. Zhao’s interdisciplinary approach fosters impactful collaborations, addressing pressing technological needs in cloud computing, scientific simulations, and data analytics. His research bridges the gap between theoretical insights and practical applications in modern computing ecosystems. 🚀📊🧠

Awards and Honors 

  • 🏆 2022 Federal Research Grant: NSF 2112345, $255,916 for a DLT Machine Learning Platform
  • 🌟 2020 Federal Research Grant: DOE SC0020455, $200,000 for HPChain blockchain research
  • 🏅 2019 Best Paper Award: International Conference on Cloud Computing
  • 🥇 2018 Best Student Paper Award: IEEE International Conference on Cloud Computing
  • 🎓 2015 Postdoctoral Fellowship: Sloan Foundation, $155,000
  • 🎖️ 2007 Graduate Fellowship: Oak Ridge Institute for Science and Education, $85,000

Publication Top Notes:

1. Regulated Charging of Plug-In Hybrid Electric Vehicles for Minimizing Load Variance in Household Smart Microgrid

  • Authors: L. Jian, H. Xue, G. Xu, X. Zhu, D. Zhao, Z.Y. Shao
  • Published In: IEEE Transactions on Industrial Electronics, Volume 60, Issue 8, Pages 3218-3226
  • Citations: 280 (as of 2012)
  • Abstract:
    This paper proposes a regulated charging strategy for plug-in hybrid electric vehicles (PHEVs) to minimize load variance in household smart microgrids. The method ensures that the charging process aligns with household power demand patterns, improving grid stability and efficiency.

2. ZHT: A Lightweight, Reliable, Persistent, Dynamic, Scalable Zero-Hop Distributed Hash Table

  • Authors: T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang, A. Rajendran, Z. Zhang, …
  • Published In: IEEE International Symposium on Parallel & Distributed Processing (IPDPS)
  • Citations: 212 (as of 2013)
  • Abstract:
    This paper introduces ZHT, a zero-hop distributed hash table designed for high-performance computing systems. It is lightweight, scalable, and reliable, making it suitable for persistent data storage in distributed environments.

3. Optimizing Load Balancing and Data-Locality with Data-Aware Scheduling

  • Authors: K. Wang, X. Zhou, T. Li, D. Zhao, M. Lang, I. Raicu
  • Published In: 2014 IEEE International Conference on Big Data (Big Data), Pages 119-128
  • Citations: 171 (as of 2014)
  • Abstract:
    This paper addresses the challenges of load balancing and data locality in big data processing systems. A novel data-aware scheduling algorithm is proposed to improve efficiency and performance in high-performance computing environments.

4. FusionFS: Toward Supporting Data-Intensive Scientific Applications on Extreme-Scale High-Performance Computing Systems

  • Authors: D. Zhao, Z. Zhang, X. Zhou, T. Li, K. Wang, D. Kimpe, P. Carns, R. Ross, …
  • Published In: 2014 IEEE International Conference on Big Data (Big Data), Pages 61-70
  • Citations: 154 (as of 2014)
  • Abstract:
    FusionFS is a distributed file system tailored for extreme-scale high-performance computing systems. It provides efficient data storage and retrieval, supporting data-intensive scientific applications and overcoming the bottlenecks in traditional storage systems.

5. Enhanced Data-Driven Fault Diagnosis for Machines with Small and Unbalanced Data Based on Variational Auto-Encoder

  • Authors: D. Zhao, S. Liu, D. Gu, X. Sun, L. Wang, Y. Wei, H. Zhang
  • Published In: Measurement Science and Technology, Volume 31, Issue 3, Article 035004
  • Citations: 105 (as of 2019)
  • Abstract:
    This study enhances fault diagnosis for machines using a data-driven approach. By leveraging variational auto-encoders (VAEs), the method effectively handles small and unbalanced datasets, achieving high diagnostic accuracy for industrial applications.