Yu Sha | Deep Learning | Best Researcher Award

Dr. Yu Sha | Deep Learning | Best Researcher Award

Yu Sha at Xidian University, China.

Yu Sha is a doctoral researcher specializing in artificial intelligence applications for cavitation detection and intensity recognition. He is pursuing a Doctor of Engineering at Xidian University, China, and was a visiting PhD student at the Frankfurt Institute for Advanced Studies, Germany. His research focuses on AI-driven fault detection in industrial systems, with multiple publications, patents, and academic honors to his name.

Professional Profile:

Scopus

Google Scholar

Education Background

1.  Xidian University, China (2019 – Present)

    • Ph.D. in Computer Science and Technology (College of Artificial Intelligence)
    • Research Focus: Cavitation detection and intensity recognition via deep learning
    • Anticipated Graduation: June 2024

2.  Frankfurt Institute for Advanced Studies, Germany (2020 – 2022)

    • Visiting PhD Researcher (Cavitation and leakage detection using AI)

3.  Lanzhou University of Technology, China (2015 – 2019)

    • B.Sc. in Information and Computing Science
    • Ranked 1st out of 54 students

Professional Development

Yu Sha has contributed to multiple research projects at Xidian University, including AI-driven battlefield situation analysis and decision-making. His work at the Frankfurt Institute for Advanced Studies focused on AI-based cavitation and leakage detection in large-scale pump and pipeline systems. His research expertise extends to deep learning, fault diagnosis in industrial systems, and reinforcement learning.

Research Focus

  • AI-driven cavitation detection and intensity recognition
  • Fault diagnosis and predictive maintenance in industrial systems
  • Deep learning and reinforcement learning applications in engineering

Author Metrics:

  • Publications: Articles accepted in high-impact journals like Machine Intelligence Research and Mechanical Systems and Signal Processing.
  • Conferences: Research presented at ACM SIGKDD and other international venues.
  • Patents: Multiple invention patents related to cavitation detection, face aging estimation, and heart rate estimation

Awards and Honors:

  • Outstanding Doctoral Student, Xidian University (2021, 2022)
  • Multiple Graduate Student Academic Scholarships (First & Second Level)
  • National Encouragement Scholarship (2016, 2017)
  • First Prize in multiple mathematical modeling and AI competitions, including MCM/ICM, MathorCup, and Teddy Cup Data Mining Challenge

Publication Top Notes

1. A Multi-Task Learning for Cavitation Detection and Cavitation Intensity Recognition of Valve Acoustic Signals

  • Authors: Yu Sha, Johannes Faber, Shuiping Gou, Bo Liu, Wei Li, Stefan Schramm, Horst Stoecker, Thomas Steckenreiter, Domagoj Vnucec, Nadine Wetzstein, Andreas Widl, Kai Zhou
  • Published In: Engineering Applications of Artificial Intelligence, Volume 113, August 2022, Article 104904
  • DOI: 10.1016/j.engappai.2022.104904
  • Publisher: Elsevier Ltd.
  • Abstract: The paper proposes a novel multi-task learning framework using 1-D double hierarchical residual networks (1-D DHRN) for simultaneous cavitation detection and cavitation intensity recognition in valve acoustic signals. The approach addresses challenges such as limited sample sizes and poor separability of cavitation states by employing data augmentation techniques and advanced neural network architectures. The framework demonstrated high prediction accuracies across multiple datasets, outperforming other deep learning models and conventional methods.
  • Access: The full paper is available at https://www.sciencedirect.com/science/article/pii/S0952197622001361

2. An Acoustic Signal Cavitation Detection Framework Based on XGBoost with Adaptive Selection Feature Engineering

  • Authors: Yu Sha, Johannes Faber, Shuiping Gou, Bo Liu, Wei Li, Stefan Schramm, Horst Stoecker, Thomas Steckenreiter, Domagoj Vnucec, Nadine Wetzstein, Andreas Widl, Kai Zhou
  • Published In: Measurement, Volume 192, June 2022, Article 110897
  • DOI: 10.1016/j.measurement.2022.110897
  • Publisher: Elsevier Ltd.
  • Abstract: This study introduces a framework combining XGBoost with adaptive selection feature engineering (ASFE) for detecting cavitation in valves using acoustic signals. The methodology includes data augmentation through a non-overlapping sliding window, feature extraction using fast Fourier transform (FFT), and adaptive feature engineering to enhance input features for the XGBoost algorithm. The framework achieved satisfactory prediction performance in both binary and four-class classifications, outperforming traditional XGBoost models.
  • Access: The full paper is available at https://www.sciencedirect.com/science/article/pii/S0263224122001798

3. Regional-Local Adversarially Learned One-Class Classifier Anomalous Sound Detection in Global Long-Term Space

  • Authors: Yu Sha, Shuiping Gou, Johannes Faber, Bo Liu, Wei Li, Stefan Schramm, Horst Stoecker, Thomas Steckenreiter, Domagoj Vnucec, Nadine Wetzstein, Andreas Widl, Kai Zhou
  • Published In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, August 2022
  • DOI: 10.1145/3534678.3539133
  • Publisher: Association for Computing Machinery (ACM)
  • Abstract: This paper introduces a multi-pattern adversarial learning one-class classification framework for anomalous sound detection (ASD) in mechanical equipment monitoring. The framework utilizes two auto-encoding generators to reconstruct normal acoustic data patterns, extending the discriminator’s role to distinguish between regional and local pattern reconstructions. A global filter layer is also presented to capture long-term interactions in the frequency domain without human priors. The proposed method demonstrated superior performance on four real-world datasets from different industrial domains, outperforming recent state-of-the-art ASD methods.
  • Access: The full paper is available at https://dl.acm.org/doi/10.1145/3534678.3539133

4. A Study on Small Magnitude Seismic Phase Identification Using 1D Deep Residual Neural Network

  • Authors: Wei Li, Megha Chakraborty, Yu Sha, Kai Zhou, Johannes Faber, Georg Rümpker, Horst Stöcker, Nishtha Srivastava
  • Published In: Artificial Intelligence in Geosciences, Volume 3, December 2022, Pages 115-122
  • DOI: 10.1016/j.aiig.2022.10.002
  • Publisher: KeAi Publishing Communications Ltd.
  • Abstract: This study develops a 1D deep Residual Neural Network (ResNet) to address the challenges of seismic signal detection and phase identification, particularly for small magnitude events or signals with low signal-to-noise ratios. The proposed method was trained and tested on datasets from the Southern California Seismic Network, demonstrating high accuracy and robustness in identifying seismic phases, thereby offering a valuable tool for seismic monitoring and analysis.
  • Access: The full paper is available at https://www.sciencedirect.com/science/article/pii/S2666544122000284

5. Deep Learning-Based Small Magnitude Earthquake Detection and Seismic Phase Classification

  • Authors: Wei Li, Yu Sha, Kai Zhou, Johannes Faber, Georg Ruempker, Horst Stoecker, Nishtha Srivastava
  • Published In: arXiv preprint arXiv:2204.02870, April 2022
  • DOI: N/A
  • Publisher: arXiv
  • Abstract: This paper investigates two deep learning-based models, namely 1D

Conclusion

Dr. Yu Sha is a highly deserving candidate for the Best Researcher Award due to his pioneering contributions to AI-driven cavitation detection, deep learning applications, and fault diagnosis in industrial systems. His strong academic record, international exposure, high-impact publications, and patent portfolio make him a standout researcher in deep learning for industrial applications. With further industry collaborations and expanded leadership roles, he could solidify his reputation as a global leader in AI-based fault detection.

Zhi Gao | Vision-Language Models | Best Researcher Award

Dr. Zhi Gao | Vision-Language Models | Best Researcher Award

Postdoctoral Research Fellow at Peking University, China.

Dr. Zhi Gao is a Postdoctoral Research Fellow at the School of Intelligence Science and Technology, Peking University. His research focuses on multimodal learning, vision-language models, and human-robot interaction. With expertise in computer vision and machine learning, he explores the development of intelligent agents capable of understanding and interacting with complex environments.

Professional Profile:

Google Scholar Profile

Education Background 🎓📖

  • Ph.D. in Computer Science and Technology, Beijing Institute of Technology (2018–2023)
  • Master in Computer Science and Technology, Beijing Institute of Technology (2017–2018)
  • B.S. in Computer Science and Technology, Beijing Institute of Technology (2013–2017)

Professional Development 📈💡

Dr. Gao is currently a Postdoctoral Research Fellow at Peking University under the supervision of Prof. Song-Chun Zhu, focusing on multimodal learning and agent development. Concurrently, he serves as a Research Scientist at the Beijing Institute for General Artificial Intelligence, working on vision-language models in the Machine Learning Lab. His research integrates deep learning, data representation, and human-centered AI to enhance machine perception and reasoning.

Research Focus 🔬📖

His work spans computer vision and machine learning, particularly in developing multimodal agents capable of learning from human-robot interactions and adapting to dynamic environments. He is also interested in leveraging the geometry of data space to address challenges such as insufficient annotations and distribution shifts.

Author Metrics

  • Publications in top-tier AI and computer vision conferences and journals
  • Research contributions in multimodal intelligence, vision-language understanding, and AI-driven reasoning

Awards & Honors 🏆🎖️

  • National Science Foundation for Young Scientists of China (2025–2027) for research on Riemannian multimodal large language models for video understanding
  • Distinguished Dissertation Award from SIGAI CHINA (October 202X)

Publication Top Notes

1. A Hyperbolic-to-Hyperbolic Graph Convolutional Network

Authors: Jindou Dai, Yuwei Wu, Zhi Gao, Yunde Jia
Published in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 154-163
Abstract: This paper introduces a hyperbolic-to-hyperbolic graph convolutional network (H2H-GCN) that operates directly on hyperbolic manifolds. The proposed method includes a manifold-preserving graph convolution with hyperbolic feature transformation and neighborhood aggregation, avoiding distortions from tangent space approximations. Extensive experiments demonstrate substantial improvements in tasks such as link prediction, node classification, and graph classification.

2. Curvature Generation in Curved Spaces for Few-Shot Learning

Authors: Zhi Gao, Yuwei Wu, Yunde Jia, Mehrtash Harandi
Published in: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 8671-8680
Abstract: This research addresses few-shot learning by proposing task-aware curved embedding spaces using hyperbolic geometry. By generating task-specific embedding spaces with appropriate curvatures, the method enhances the generality of embeddings. The study leverages intra-class and inter-class context information to create discriminative class prototypes, showing benefits over existing embedding methods in both inductive and transductive few-shot learning scenarios.

3. Deep Convolutional Network with Locality and Sparsity Constraints for Texture Classification

Authors: Xiaoyu Bu, Yuwei Wu, Zhi Gao, Yunde Jia
Published in: Pattern Recognition, Volume 91, 2019, Pages 34-46
Abstract: This paper presents a deep convolutional network incorporating locality and sparsity constraints to improve texture classification. The proposed model enhances feature representation by enforcing local connectivity and sparse activation, leading to improved classification performance on texture datasets.

4. Meta-Causal Learning for Single Domain Generalization

Authors: Jianlong Chen, Zhi Gao, Xiaodan Wu, Jiebo Luo
Published in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023
Abstract: The study introduces a meta-causal learning framework aimed at enhancing generalization in single-domain settings. By leveraging causal relationships within the data, the approach seeks to improve model robustness when applied to unseen domains, addressing challenges in domain generalization.

5. A Robust Distance Measure for Similarity-Based Classification on the SPD Manifold

Authors: Zhi Gao, Yuwei Wu, Mehrtash Harandi, Yunde Jia
Published in: IEEE Transactions on Neural Networks and Learning Systems, Volume 31, Issue 9, 2019, Pages 3230-3244
Abstract: This research proposes a robust distance measure tailored for similarity-based classification tasks on the Symmetric Positive Definite (SPD) manifold. The developed measure enhances classification accuracy by effectively capturing the intrinsic geometry of the SPD manifold, demonstrating robustness in various similarity-based classification scenarios.

Conclusion:

Dr. Zhi Gao is a strong candidate for the Best Researcher Award, given his groundbreaking contributions in vision-language models, hyperbolic learning, and multimodal AI. His strong academic background, top-tier publications, and national recognition make him a well-qualified nominee. However, to further strengthen his impact, he could focus on industry collaborations, real-world AI applications, and global AI leadership.

Verdict:Highly suitable for the Best Researcher Award with minor areas of improvement for long-term impact.

Junbin zhuang | Deep Learning | Best Researcher Award

Mr. junbin zhuang | Deep Learning | Best Researcher Award

PhD at xidian Unviersity, China.

Zhuang Junbin (庄俊彬) is a dedicated researcher specializing in deep learning and image processing 🧠📷. Born in 1993, he is currently pursuing a Ph.D. at Xi’an University of Electronic Science and Technology 🎓, focusing on computer vision, multi-sensor information fusion, and superpixel segmentation. With over 10+ SCI/EI-indexed papers 🏆, multiple patents, and involvement in national and industrial projects, he has significantly contributed to remote sensing, infrared imaging, and intelligent scene perception 🚀. His research has been published in top-tier journals, reflecting his innovative approach to AI-powered image analysis.

Professional Profile:

ORCID Profile

Suitability for Best Researcher Award

Dr. Zhuang Junbin is a highly qualified candidate for the Best Researcher Award, given his extensive contributions to deep learning, image processing, and multi-sensor information fusion. His strong publication record, leadership in national and industrial research projects, and intellectual property contributions make him an outstanding researcher in his field.

Education & Experience 🎓💼

📌 Ph.D. in Instrument Science & Technology – Xi’an University of Electronic Science and Technology (2019 – Present)
📌 M.Sc. in Control Science & Engineering – Harbin Engineering University (2018 – 2019)
📌 Lead Researcher – AI-driven superpixel segmentation & multi-sensor fusion projects
📌 Project Leader – Space scene perception & infrared target detection
📌 Published 10+ SCI/EI Papers – IEEE, Remote Sensing, Top AI journals
📌 Patents & Software – 5+ intellectual property contributions

Professional Development 🚀📖

Zhuang Junbin has led multiple research projects focusing on multi-source information fusion, remote sensing image analysis, and AI-based vision enhancement 🔬. He has designed and deployed novel algorithms for superpixel segmentation, infrared detection, and underwater image enhancement 🌊📡. His leadership in national defense, aerospace, and AI-driven perception systems has resulted in cutting-edge innovations in sensor fusion and intelligent imaging 🛰️🔍. His work is instrumental in military applications, satellite technology, and remote sensing automation, demonstrating his commitment to bridging AI with real-world challenges 🌍🤖.

Research Focus 🔬📊

Zhuang Junbin’s research primarily revolves around deep learning-driven image processing and multi-sensor data fusion 🖥️🔍. His work includes:
📌 Superpixel Segmentation – Advanced algorithms for precise image segmentation and boundary awareness 🏞️🧩
📌 Remote Sensing & AI – Developing models for satellite image analysis, terrain classification, and geospatial intelligence 🛰️🌏
📌 Infrared Object Detection – Enhancing military and defense imaging systems for real-time surveillance 🎯🔥
📌 Underwater Image Enhancement – AI-based dehazing and color restoration for deep-sea exploration 🐠🌊
📌 Multi-Domain Image Fusion – Integrating visible, infrared, and remote sensing data for superior image clarity 📡📷

Awards & Honors 🏆🎖️

🏅 Top-Tier Publications – Published in IEEE Transactions, Remote Sensing (SCI Q1-Q2, IF 8.3, 5.3, 3.4)
🏅 National Research Grants – Contributor to National Natural Science Foundation projects
🏅 Industrial Collaboration – Led defense and aerospace AI projects for space and military applications 🚀
🏅 Innovation Patents & Software – 5+ patents and software copyrights in computer vision & AI
🏅 Best Research Project Leadership – Recognized for leading high-impact AI research in multi-sensor fusion 🎯

Publication Top Notes

  • “Band Selection Algorithm Based on Multi-Feature and Affinity Propagation Clustering”

    • Authors: Junbin Zhuang, Wenying Chen, Xunan Huang, Yunyi Yan
    • Year: 2025
  • “Globally Deformable Information Selection Transformer for Underwater Image Enhancement”

    • Authors: Junbin Zhuang, Yan Zheng, Baolong Guo, Yunyi Yan​​​
  • “HIFI-Net: A Novel Network for Enhancement to Underwater Optical Images”

    • Authors: Jiajia Zhou, Junbin Zhuang, Yan Zheng, Yasheng Chang, Suleman Mazhar
    • Year: 2024​​
  • “Infrared Weak Target Detection in Dual Images and Dual Areas”

    • Authors: Junbin Zhuang, Wenying Chen, Baolong Guo, Yunyi Yan
    • Year: 2024​​
  • “Area Contrast Distribution Loss for Underwater Image Enhancement”

    • Authors: Jiajia Zhou, Junbin Zhuang, Yan Zheng, Juan Li
    • Year: 2023
  • “Research on Underwater Image Recognition Based on Transfer Learning”

    • Authors: Jiajia Zhou, Junbin Zhuang, Benyin Li, Liang Zhou
    • Year: 2022

An Zeng | Machine Learning | Best Researcher Award

Prof. An Zeng | Machine Learning | Best Researcher Award

Professor at Guangdong University of Technology, China📖

Professor Zeng An is a distinguished researcher with extensive expertise in machine learning, data mining technologies, and their applications in medicine. Her work has significantly contributed to the advancement of deep learning, neural networks, probabilistic models, rough set theory, genetic algorithms, and other optimization methods. Since her postdoctoral research at the National Research Council of Canada and Dalhousie University (2008–2011) under the guidance of Professor Kenneth Rockwood, Professor Xiaowei Song, and Professor Arnold Mitnitski, she has been dedicated to applying these computational techniques to clinical research on Alzheimer’s Disease (AD).

Profile

Scopus Profile

Education Background🎓

Professor Zeng An completed her postdoctoral research at the National Research Council of Canada, collaborating with leading experts in medical AI applications. She holds a Ph.D. in Computer Science with a focus on machine learning and data mining techniques for medical applications. Her academic journey also includes a master’s and a bachelor’s degree in computer science or related fields (specific institutions and years can be added if available).

Professional Experience🌱

With a career spanning academia and research, Professor Zeng An has held key positions in leading universities and research institutions. During her postdoctoral tenure (2008–2011), she worked at Dalhousie University’s Faculty of Computer Science and Faculty of Medicine, contributing to AI-driven clinical research on neurodegenerative diseases. She has since continued her work in academia, conducting research on advanced machine learning techniques, medical data analysis, and clinical decision support systems.

Research Interests🔬

Professor Zeng An’s research focuses on developing intelligent algorithms for medical applications, particularly in Alzheimer’s Disease diagnostics and prediction. She specializes in deep learning, neural networks, probabilistic models, genetic algorithms, and optimization techniques. Her work extends to clinical data mining, patient risk assessment, and AI-driven medical decision-making, significantly impacting precision medicine.

Author Metrics

Professor Zeng An has a strong publication record in high-impact journals and conferences related to machine learning, AI in healthcare, and medical informatics. Her work has received substantial citations, reflecting her influence in the field. Key metrics such as H-index, i10-index, and total citations further highlight her academic contributions (specific numbers can be added if available).

Awards & Honors

Throughout her career, Professor Zeng An has received prestigious awards and recognitions for her contributions to AI and medical research. Her collaborations with renowned scientists in AI-driven healthcare innovations have led to groundbreaking advancements in the field. She continues to be a leading figure in interdisciplinary research, bridging computer science and medicine for improved healthcare outcomes.

Publications Top Notes 📄

1. Reinforcement Learning-Based Method for Type B Aortic Dissection Localization

  • Authors: Zeng An, Xianyang Lin, Jingliang Zhao, Baoyao Yang, Xin Liu
  • Journal: Journal of Biomedical Engineering (Shengwu Yixue Gongchengxue Zazhi), 2024
  • Citations: 0
  • Summary: This study presents a reinforcement learning-based approach for accurately localizing Type B aortic dissection, improving diagnostic precision in medical imaging.

2. Progressive Deep Snake for Instance Boundary Extraction in Medical Images (Open Access)

  • Authors: Zixuan Tang, Bin Chen, Zeng An, Mengyuan Liu, Shen Zhao
  • Journal: Expert Systems with Applications, 2024
  • Citations: 2
  • Summary: The research introduces a progressive deep snake model to enhance boundary extraction in medical images, facilitating precise segmentation for clinical applications.

3. Multi-Scale Quaternion CNN and BiGRU with Cross Self-Attention Feature Fusion for Fault Diagnosis of Bearing

  • Authors: Huanbai Liu, Fanlong Zhang, Yin Tan, Shenghong Luo, Zeng An
  • Journal: Measurement Science and Technology, 2024
  • Citations: 1
  • Summary: This paper develops a multi-scale quaternion CNN and BiGRU model integrating cross self-attention feature fusion to enhance the accuracy of bearing fault diagnosis in industrial applications.

4. An Ensemble Model for Assisting Early Alzheimer’s Disease Diagnosis Based on Structural Magnetic Resonance Imaging with Dual-Time-Point Fusion

  • Authors: Zeng An, Jianbin Wang, Dan Pan, Wenge Chen, Juhua Wu
  • Journal: Journal of Biomedical Engineering (Shengwu Yixue Gongchengxue Zazhi), 2024
  • Citations: 0
  • Summary: The study proposes an ensemble model utilizing dual-time-point fusion of MRI scans to improve early detection and diagnosis of Alzheimer’s Disease.

5. FedDUS: Lung Tumor Segmentation on CT Images Through Federated Semi-Supervised Learning with Dynamic Update Strategy

  • Authors: Dan Wang, Chu Han, Zhen Zhang, Zhenwei Shi, Zaiyi Liu
  • Journal: Computer Methods and Programs in Biomedicine, 2024
  • Summary: This research introduces a federated semi-supervised learning framework with a dynamic update strategy for effective lung tumor segmentation in CT imaging.

Conclusion

Professor An Zeng is a highly qualified candidate for the Best Researcher Award, given her outstanding contributions to AI in medicine, deep learning, and computational diagnostics. Her strong publication record, international research experience, and interdisciplinary approach make her an excellent nominee. While expanding clinical collaborations and citation impact would further enhance her profile, her cutting-edge research already positions her as a leader in medical AI applications.