Tzu-Chien Wang | AI | Best Researcher Award

Assist. Prof. Dr. Tzu-Chien Wang | AI | Best Researcher Award

Tzu-Chien Wang at Department of Computer Science and Information Management Soochow University, Taiwan

Dr. Tzu-Chien Wang is an Assistant Professor in the Department of Computer Science and Information Management at Soochow University. He specializes in artificial intelligence, data mining, decision support systems, and process improvement techniques. With a strong background in machine learning, natural language processing, and predictive modeling, he has contributed significantly to both academia and industry by developing proof-of-concept models for operational processes.

Professional Profile:

Orcid

Google Scholar

Education Background

Dr. Tzu-Chien Wang earned his Ph.D. in Business Administration from National Taiwan University, where he specialized in data-driven decision-making, artificial intelligence applications, and business intelligence. His doctoral research focused on leveraging machine learning, data mining, and optimization techniques to enhance decision support systems and operational efficiency. His academic training has provided him with a strong foundation in predictive modeling, natural language processing, and process improvement methodologies, which he has effectively applied in both research and industry settings.

Professional Development

Dr. Wang has a diverse professional background, spanning academia, industry, and research institutions. Before joining Soochow University in 2025, he served as an Assistant Professor at Mackay Junior College of Medicine, Nursing, and Management. He also held managerial roles in data development at VisualSoft Information System Co., Ltd. and worked as a Senior Data Analyst at Fubon Life Insurance Co., Ltd. Additionally, he contributed as an Assistant Research Fellow at the Commerce Development Research Institute, focusing on international digital commerce.

Research Focus

His research interests include artificial intelligence, data mining, decision support systems, natural language processing, optimization, clustering, classification, and predictive model building. He is particularly engaged in developing AI-driven solutions for business intelligence, healthcare applications, and digital transformation.

Author Metrics:

Dr. Wang has published extensively in AI, data analytics, and business intelligence. His research contributions can be found on Google Scholar, reflecting his impact on data science and AI applications.

Awards and Honors:

  • High-Age Health Smart Medical Care Industry-Academia Alliance, National Science and Technology Council, Taiwan (2025–2028)

  • AI+BI Agile Development Data Platform Project, Ministry of Economic Affairs, Taiwan (2022)

  • Consumer Data-Driven Precision R&D and Manufacturing (C2M) Promotion Project, Bureau of Energy, Taiwan (2021)

Publication Top Notes

1. Deep Learning-Based Prediction and Revenue Optimization for Online Platform User Journeys

  • Author: T.C. Wang
  • Journal: Quantitative Finance and Economics (2024)
  • Type: Research Article
  • Citations: 6
  • Summary: This study utilizes deep learning techniques to predict user behavior and optimize revenue generation on online platforms, improving personalized recommendations and business strategies.

2. An Integrated Data-Driven Procedure for Product Specification Recommendation Optimization with LDA-LightGBM and QFD

  • Authors: T.C. Wang, R.S. Guo, C. Chen
  • Journal: Sustainability (2023)
  • Type: Research Article
  • Citations: 5
  • Summary: This research presents a hybrid framework combining Latent Dirichlet Allocation (LDA), LightGBM, and Quality Function Deployment (QFD) to optimize product specification recommendations, improving efficiency in sustainable manufacturing.

3. Integrating Latent Dirichlet Allocation and Gradient Boosting Tree Methodology for Insurance Product Development Recommendation

  • Authors: W.Y. Chen, T.C. Wang, R.S. Guo, C. Chen
  • Conference: Proceedings of the 9th International Conference on Big Data Analytics (ICBDA) (2024)
  • Type: Conference Paper
  • Citations: 1
  • Summary: This paper integrates LDA and Gradient Boosting Trees to refine insurance product development recommendations, offering a data-driven approach for personalized insurance solutions.

4. Data Mining Methods to Support C2M Product-Service Systems Design and Recommendation System Based on User Value

  • Authors: T.C. Wang, R.S. Guo, C. Chen
  • Conference: 2022 Portland International Conference on Management of Engineering and Technology (PICMET)
  • Type: Conference Paper
  • Citations: 1
  • Summary: This study explores data mining techniques to enhance Consumer-to-Manufacturer (C2M) product-service system design, optimizing recommendation systems based on user value analysis.

5. Customer Demand Evaluation Method

  • Author: T.C. Wang
  • Patent: TW Patent TW202,414,306 A (2024)
  • Type: Patent
  • Summary: This patent presents a novel method for evaluating customer demand using AI-driven analytics, enhancing precision in product development and market segmentation.

Conclusion

Dr. Tzu-Chien Wang is a strong candidate for the Best Researcher Award, given his expertise in AI, machine learning, and business intelligence, along with his demonstrated contributions to academia and industry. His innovative research, patents, and funded projects underscore his impact. By expanding global collaborations, diversifying his research themes, and increasing engagement in AI policy and ethics, he can further solidify his standing as a leading researcher in artificial intelligence

Yu Sha | Deep Learning | Best Researcher Award

Dr. Yu Sha | Deep Learning | Best Researcher Award

Yu Sha at Xidian University, China.

Yu Sha is a doctoral researcher specializing in artificial intelligence applications for cavitation detection and intensity recognition. He is pursuing a Doctor of Engineering at Xidian University, China, and was a visiting PhD student at the Frankfurt Institute for Advanced Studies, Germany. His research focuses on AI-driven fault detection in industrial systems, with multiple publications, patents, and academic honors to his name.

Professional Profile:

Scopus

Google Scholar

Education Background

1.  Xidian University, China (2019 – Present)

    • Ph.D. in Computer Science and Technology (College of Artificial Intelligence)
    • Research Focus: Cavitation detection and intensity recognition via deep learning
    • Anticipated Graduation: June 2024

2.  Frankfurt Institute for Advanced Studies, Germany (2020 – 2022)

    • Visiting PhD Researcher (Cavitation and leakage detection using AI)

3.  Lanzhou University of Technology, China (2015 – 2019)

    • B.Sc. in Information and Computing Science
    • Ranked 1st out of 54 students

Professional Development

Yu Sha has contributed to multiple research projects at Xidian University, including AI-driven battlefield situation analysis and decision-making. His work at the Frankfurt Institute for Advanced Studies focused on AI-based cavitation and leakage detection in large-scale pump and pipeline systems. His research expertise extends to deep learning, fault diagnosis in industrial systems, and reinforcement learning.

Research Focus

  • AI-driven cavitation detection and intensity recognition
  • Fault diagnosis and predictive maintenance in industrial systems
  • Deep learning and reinforcement learning applications in engineering

Author Metrics:

  • Publications: Articles accepted in high-impact journals like Machine Intelligence Research and Mechanical Systems and Signal Processing.
  • Conferences: Research presented at ACM SIGKDD and other international venues.
  • Patents: Multiple invention patents related to cavitation detection, face aging estimation, and heart rate estimation

Awards and Honors:

  • Outstanding Doctoral Student, Xidian University (2021, 2022)
  • Multiple Graduate Student Academic Scholarships (First & Second Level)
  • National Encouragement Scholarship (2016, 2017)
  • First Prize in multiple mathematical modeling and AI competitions, including MCM/ICM, MathorCup, and Teddy Cup Data Mining Challenge

Publication Top Notes

1. A Multi-Task Learning for Cavitation Detection and Cavitation Intensity Recognition of Valve Acoustic Signals

  • Authors: Yu Sha, Johannes Faber, Shuiping Gou, Bo Liu, Wei Li, Stefan Schramm, Horst Stoecker, Thomas Steckenreiter, Domagoj Vnucec, Nadine Wetzstein, Andreas Widl, Kai Zhou
  • Published In: Engineering Applications of Artificial Intelligence, Volume 113, August 2022, Article 104904
  • DOI: 10.1016/j.engappai.2022.104904
  • Publisher: Elsevier Ltd.
  • Abstract: The paper proposes a novel multi-task learning framework using 1-D double hierarchical residual networks (1-D DHRN) for simultaneous cavitation detection and cavitation intensity recognition in valve acoustic signals. The approach addresses challenges such as limited sample sizes and poor separability of cavitation states by employing data augmentation techniques and advanced neural network architectures. The framework demonstrated high prediction accuracies across multiple datasets, outperforming other deep learning models and conventional methods.
  • Access: The full paper is available at https://www.sciencedirect.com/science/article/pii/S0952197622001361

2. An Acoustic Signal Cavitation Detection Framework Based on XGBoost with Adaptive Selection Feature Engineering

  • Authors: Yu Sha, Johannes Faber, Shuiping Gou, Bo Liu, Wei Li, Stefan Schramm, Horst Stoecker, Thomas Steckenreiter, Domagoj Vnucec, Nadine Wetzstein, Andreas Widl, Kai Zhou
  • Published In: Measurement, Volume 192, June 2022, Article 110897
  • DOI: 10.1016/j.measurement.2022.110897
  • Publisher: Elsevier Ltd.
  • Abstract: This study introduces a framework combining XGBoost with adaptive selection feature engineering (ASFE) for detecting cavitation in valves using acoustic signals. The methodology includes data augmentation through a non-overlapping sliding window, feature extraction using fast Fourier transform (FFT), and adaptive feature engineering to enhance input features for the XGBoost algorithm. The framework achieved satisfactory prediction performance in both binary and four-class classifications, outperforming traditional XGBoost models.
  • Access: The full paper is available at https://www.sciencedirect.com/science/article/pii/S0263224122001798

3. Regional-Local Adversarially Learned One-Class Classifier Anomalous Sound Detection in Global Long-Term Space

  • Authors: Yu Sha, Shuiping Gou, Johannes Faber, Bo Liu, Wei Li, Stefan Schramm, Horst Stoecker, Thomas Steckenreiter, Domagoj Vnucec, Nadine Wetzstein, Andreas Widl, Kai Zhou
  • Published In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, August 2022
  • DOI: 10.1145/3534678.3539133
  • Publisher: Association for Computing Machinery (ACM)
  • Abstract: This paper introduces a multi-pattern adversarial learning one-class classification framework for anomalous sound detection (ASD) in mechanical equipment monitoring. The framework utilizes two auto-encoding generators to reconstruct normal acoustic data patterns, extending the discriminator’s role to distinguish between regional and local pattern reconstructions. A global filter layer is also presented to capture long-term interactions in the frequency domain without human priors. The proposed method demonstrated superior performance on four real-world datasets from different industrial domains, outperforming recent state-of-the-art ASD methods.
  • Access: The full paper is available at https://dl.acm.org/doi/10.1145/3534678.3539133

4. A Study on Small Magnitude Seismic Phase Identification Using 1D Deep Residual Neural Network

  • Authors: Wei Li, Megha Chakraborty, Yu Sha, Kai Zhou, Johannes Faber, Georg Rümpker, Horst Stöcker, Nishtha Srivastava
  • Published In: Artificial Intelligence in Geosciences, Volume 3, December 2022, Pages 115-122
  • DOI: 10.1016/j.aiig.2022.10.002
  • Publisher: KeAi Publishing Communications Ltd.
  • Abstract: This study develops a 1D deep Residual Neural Network (ResNet) to address the challenges of seismic signal detection and phase identification, particularly for small magnitude events or signals with low signal-to-noise ratios. The proposed method was trained and tested on datasets from the Southern California Seismic Network, demonstrating high accuracy and robustness in identifying seismic phases, thereby offering a valuable tool for seismic monitoring and analysis.
  • Access: The full paper is available at https://www.sciencedirect.com/science/article/pii/S2666544122000284

5. Deep Learning-Based Small Magnitude Earthquake Detection and Seismic Phase Classification

  • Authors: Wei Li, Yu Sha, Kai Zhou, Johannes Faber, Georg Ruempker, Horst Stoecker, Nishtha Srivastava
  • Published In: arXiv preprint arXiv:2204.02870, April 2022
  • DOI: N/A
  • Publisher: arXiv
  • Abstract: This paper investigates two deep learning-based models, namely 1D

Conclusion

Dr. Yu Sha is a highly deserving candidate for the Best Researcher Award due to his pioneering contributions to AI-driven cavitation detection, deep learning applications, and fault diagnosis in industrial systems. His strong academic record, international exposure, high-impact publications, and patent portfolio make him a standout researcher in deep learning for industrial applications. With further industry collaborations and expanded leadership roles, he could solidify his reputation as a global leader in AI-based fault detection.

An Zeng | Machine Learning | Best Researcher Award

Prof. An Zeng | Machine Learning | Best Researcher Award

Professor at Guangdong University of Technology, China📖

Professor Zeng An is a distinguished researcher with extensive expertise in machine learning, data mining technologies, and their applications in medicine. Her work has significantly contributed to the advancement of deep learning, neural networks, probabilistic models, rough set theory, genetic algorithms, and other optimization methods. Since her postdoctoral research at the National Research Council of Canada and Dalhousie University (2008–2011) under the guidance of Professor Kenneth Rockwood, Professor Xiaowei Song, and Professor Arnold Mitnitski, she has been dedicated to applying these computational techniques to clinical research on Alzheimer’s Disease (AD).

Profile

Scopus Profile

Education Background🎓

Professor Zeng An completed her postdoctoral research at the National Research Council of Canada, collaborating with leading experts in medical AI applications. She holds a Ph.D. in Computer Science with a focus on machine learning and data mining techniques for medical applications. Her academic journey also includes a master’s and a bachelor’s degree in computer science or related fields (specific institutions and years can be added if available).

Professional Experience🌱

With a career spanning academia and research, Professor Zeng An has held key positions in leading universities and research institutions. During her postdoctoral tenure (2008–2011), she worked at Dalhousie University’s Faculty of Computer Science and Faculty of Medicine, contributing to AI-driven clinical research on neurodegenerative diseases. She has since continued her work in academia, conducting research on advanced machine learning techniques, medical data analysis, and clinical decision support systems.

Research Interests🔬

Professor Zeng An’s research focuses on developing intelligent algorithms for medical applications, particularly in Alzheimer’s Disease diagnostics and prediction. She specializes in deep learning, neural networks, probabilistic models, genetic algorithms, and optimization techniques. Her work extends to clinical data mining, patient risk assessment, and AI-driven medical decision-making, significantly impacting precision medicine.

Author Metrics

Professor Zeng An has a strong publication record in high-impact journals and conferences related to machine learning, AI in healthcare, and medical informatics. Her work has received substantial citations, reflecting her influence in the field. Key metrics such as H-index, i10-index, and total citations further highlight her academic contributions (specific numbers can be added if available).

Awards & Honors

Throughout her career, Professor Zeng An has received prestigious awards and recognitions for her contributions to AI and medical research. Her collaborations with renowned scientists in AI-driven healthcare innovations have led to groundbreaking advancements in the field. She continues to be a leading figure in interdisciplinary research, bridging computer science and medicine for improved healthcare outcomes.

Publications Top Notes 📄

1. Reinforcement Learning-Based Method for Type B Aortic Dissection Localization

  • Authors: Zeng An, Xianyang Lin, Jingliang Zhao, Baoyao Yang, Xin Liu
  • Journal: Journal of Biomedical Engineering (Shengwu Yixue Gongchengxue Zazhi), 2024
  • Citations: 0
  • Summary: This study presents a reinforcement learning-based approach for accurately localizing Type B aortic dissection, improving diagnostic precision in medical imaging.

2. Progressive Deep Snake for Instance Boundary Extraction in Medical Images (Open Access)

  • Authors: Zixuan Tang, Bin Chen, Zeng An, Mengyuan Liu, Shen Zhao
  • Journal: Expert Systems with Applications, 2024
  • Citations: 2
  • Summary: The research introduces a progressive deep snake model to enhance boundary extraction in medical images, facilitating precise segmentation for clinical applications.

3. Multi-Scale Quaternion CNN and BiGRU with Cross Self-Attention Feature Fusion for Fault Diagnosis of Bearing

  • Authors: Huanbai Liu, Fanlong Zhang, Yin Tan, Shenghong Luo, Zeng An
  • Journal: Measurement Science and Technology, 2024
  • Citations: 1
  • Summary: This paper develops a multi-scale quaternion CNN and BiGRU model integrating cross self-attention feature fusion to enhance the accuracy of bearing fault diagnosis in industrial applications.

4. An Ensemble Model for Assisting Early Alzheimer’s Disease Diagnosis Based on Structural Magnetic Resonance Imaging with Dual-Time-Point Fusion

  • Authors: Zeng An, Jianbin Wang, Dan Pan, Wenge Chen, Juhua Wu
  • Journal: Journal of Biomedical Engineering (Shengwu Yixue Gongchengxue Zazhi), 2024
  • Citations: 0
  • Summary: The study proposes an ensemble model utilizing dual-time-point fusion of MRI scans to improve early detection and diagnosis of Alzheimer’s Disease.

5. FedDUS: Lung Tumor Segmentation on CT Images Through Federated Semi-Supervised Learning with Dynamic Update Strategy

  • Authors: Dan Wang, Chu Han, Zhen Zhang, Zhenwei Shi, Zaiyi Liu
  • Journal: Computer Methods and Programs in Biomedicine, 2024
  • Summary: This research introduces a federated semi-supervised learning framework with a dynamic update strategy for effective lung tumor segmentation in CT imaging.

Conclusion

Professor An Zeng is a highly qualified candidate for the Best Researcher Award, given her outstanding contributions to AI in medicine, deep learning, and computational diagnostics. Her strong publication record, international research experience, and interdisciplinary approach make her an excellent nominee. While expanding clinical collaborations and citation impact would further enhance her profile, her cutting-edge research already positions her as a leader in medical AI applications.

Qinglai Wei | Self-Learning Systems | Best Researcher Award

Prof. Dr. Qinglai Wei | Self-Learning Systems | Best Researcher Award 

Associate Director, at Institute of Automation, Chinese Academy of Sciences, China.

Professor Qinglai Wei is a distinguished researcher and educator specializing in control systems, computational intelligence, and learning-based optimization. Serving as the Associate Director at The State Key Laboratory for Management and Control of Complex Systems, Chinese Academy of Sciences, he has made significant contributions to adaptive dynamic programming, nonlinear control, and reinforcement learning. With an illustrious academic journey from Northeastern University and rich professional experience, Prof. Wei has authored numerous influential papers, books, and book chapters. His awards include multiple IEEE honors and recognition as a Clarivate Highly Cited Researcher. He is a prominent figure in advancing intelligent control systems and their applications in complex scenarios.

Professional Profile

Scopus

Google Scholar

Education 🎓

  • Ph.D. in Control Theory and Control Engineering (2009): Northeastern University, China. Advised by Prof. Huaguang Zhang, his research focused on intelligent control systems.
  • M.S. in Control Theory and Control Engineering (2005): Northeastern University, China, under Prof. Xianwen Gao’s mentorship.
  • B.S. in Automation (2002): Northeastern University, China, advised by Baodong Xu.
    These academic milestones laid the foundation for his expertise in adaptive dynamic programming and intelligent systems.

Professional Experience 💼

  • Associate Director (2018–Present): The State Key Laboratory for Management and Control of Complex Systems, Chinese Academy of Sciences.
  • Professor (2016–Present): The State Key Laboratory and the School of Artificial Intelligence, University of Chinese Academy of Sciences.
  • Visiting Scholar roles at University of Rhode Island (2018) and University of Texas at Arlington (2014) reflect his international collaboration and academic outreach.
    Earlier roles include Associate and Assistant Professor positions at The State Key Laboratory, showcasing steady growth in his academic career.

Research Interests 🔬

Prof. Wei’s research spans:

  • Computational Intelligence & Intelligent Control
  • Learning Control & Reinforcement Learning
  • Optimal & Nonlinear Control
  • Adaptive Dynamic Programming
    Applications include process control, smart grids, and multi-agent systems. His innovative methods continue to drive advancements in control theory and intelligent systems.

Awards 🏆

Prof. Wei’s excellence is marked by accolades like:

  • Best Paper Awards (2023 & 2022): International CSIS-IAC and China Automation Congress.
  • IEEE Outstanding Paper Awards (2018): Recognition for impactful contributions to the IEEE journals.
  • Highly Cited Researcher (2018 & 2019): By Clarivate Analytics for his influential publications.
    Other honors include National Natural Science Foundation Awards and Young Researcher Awards, emphasizing his leadership in the field.

Top Noted Publications 📚

  • “Learning and Controlling Multiscale Dynamics in Spiking Neural Networks” (2024, IEEE Transactions on Cybernetics): This study employs Recursive Least Square (RLS) modifications to manage multiscale dynamics in spiking neural networks. It advances neural control methods for adaptive tasks in dynamic environments【8】.
  • “Event-Triggered Robust Parallel Optimal Consensus Control for Multiagent Systems” (2024, IEEE/CAA Journal of Automatica Sinica): This paper focuses on event-triggered mechanisms to ensure robust consensus in multiagent systems under parallel optimal control.
  • “Primal-Dual Adaptive Dynamic Programming for Nonlinear Systems” (2024, Automatica): A framework using primal-dual adaptive dynamic programming tackles the stabilization and optimization of nonlinear systems.
  • “Class-Incremental Learning with Balanced Embedding Discrimination” (2024, Neural Networks): This work enhances class-incremental learning by introducing techniques to balance embeddings and improve discrimination among new and existing classes.

Conclusion

Qinglai Wei is exceptionally suited for the Research for Best Researcher Award. His prolific contributions to control theory, computational intelligence, and reinforcement learning, combined with his global recognition and leadership, exemplify his stature as a world-class researcher. With a proven track record of innovative research, impactful publications, and numerous accolades, he stands out as a strong candidate for this prestigious honor. Continued expansion into interdisciplinary collaborations and mentorship initiatives will further solidify his legacy as a pioneering researcher.