Zhang Zhang | Algorithms | Best Researcher Award

Mr. Zhang Zhang | Algorithms | Best Researcher Award

Phd Student at Beijing Normal University, Chinađź“–

Zhang Zhang is a Ph.D. candidate in Complex Systems Analysis at Beijing Normal University, with visiting research experience at the University of California, San Diego, and the University of Padua. His research focuses on AI by Complexity, Machine Learning for Complex Systems, and Complex Networks. He has authored multiple high-impact papers and has received several prestigious awards for his academic excellence and contributions to network science.

Profile

Google Scholar Profile

Education Background🎓

  • Ph.D. in Complex Systems Analysis, Beijing Normal University (2019–Present)
  • Visiting Ph.D. Student, University of California, San Diego (2023–2024)
  • Visiting Ph.D. Student, University of Padua (2022–2023)
  • B.A. in Information Security, Hangzhou Dianzi University (2013–2017)

Professional Experience🌱

  • Research Assistant, Beijing Normal University (2018–2019)
  • Teaching Experience: Taught Python Programming, Machine Learning, and Deep Learning Principles; developed online courses on deep learning with significant engagement.
  • Reviewer for Information Science and Neural Computing and Applications.
Research Interests🔬
  • AI by Complexity
  • Machine Learning for Complex Systems
  • Complex Networks

Author Metrics

  • Total Citations: 252
  • h-index: 7
  • Publications: Featured in Nature Communications, Applied Network Science, Physical Review E, and top AI/complex networks conferences.

Awards & Honors

  • First-Class Scholarship (2020, 2022, 2023) – Beijing Normal University
  • China Scholarship Council (CSC) Scholarship – National High-Level Joint Doctoral Training Program (2022)
  • Best Team Award – Mediterranean School of Complex Networks (2022)
Publications Top Notes đź“„

1. The Cinderella Complex: Word embeddings reveal gender stereotypes in movies and books

  • Authors: H. Xu, Z. Zhang, L. Wu, C.J. Wang
  • Journal: PLOS One
  • Volume/Issue: 14(11)
  • DOI: 10.1371/journal.pone.0225385
  • Year: 2019
  • Citations: 89
  • Abstract: This study investigates how word embeddings reveal gender stereotypes in movies and literature, highlighting biases in linguistic representations over time.

2. A General Deep Learning Framework for Network Reconstruction and Dynamics Learning

  • Authors: Z. Zhang, Y. Zhao, J. Liu, S. Wang, R. Tao, R. Xin, J. Zhang
  • Journal: Applied Network Science
  • Volume/Issue: 4, 1-17
  • DOI: 10.1007/s41109-019-0184-x
  • Year: 2019
  • Citations: 64
  • Abstract: This paper presents a deep learning-based framework for reconstructing networks and learning their dynamics from time-series data, with applications in neuroscience and finance.

3. An Interpretable Deep-Learning Architecture of Capsule Networks for Identifying Cell-Type Gene Expression Programs from Single-Cell RNA-Sequencing Data

  • Authors: L. Wang, R. Nie, Z. Yu, R. Xin, C. Zheng, Z. Zhang, J. Zhang, J. Cai
  • Journal: Nature Machine Intelligence
  • Volume/Issue: 2(11), 693-703
  • DOI: 10.1038/s42256-020-00233-8
  • Year: 2020
  • Citations: 53
  • Abstract: This study introduces an interpretable deep-learning model using capsule networks to analyze gene expression patterns, improving accuracy in single-cell sequencing studies.

4. Universal Framework for Reconstructing Complex Networks and Node Dynamics from Discrete or Continuous Dynamics Data

  • Authors: Y. Zhang, Y. Guo, Z. Zhang, M. Chen, S. Wang, J. Zhang
  • Journal: Physical Review E
  • Volume/Issue: 106(3), 034315
  • DOI: 10.1103/PhysRevE.106.034315
  • Year: 2022
  • Citations: 20
  • Abstract: A theoretical framework to reconstruct network structures and node dynamics from both discrete and continuous data, providing insights into complex system behavior.

5. Inferring Network Structure with Unobservable Nodes from Time Series Data

  • Authors: M. Chen, Y. Zhang, Z. Zhang, L. Du, S. Wang, J. Zhang
  • Journal: Chaos: An Interdisciplinary Journal of Nonlinear Science
  • Volume/Issue: 32(1)
  • DOI: 10.1063/5.0071531
  • Year: 2022
  • Citations: 14
  • Abstract: A novel approach to infer hidden structures in dynamic networks where some nodes remain unobservable, with applications in neuroscience and social networks.

Conclusion

Zhang Zhang is an excellent candidate for the Best Researcher Award based on his strong academic contributions, international exposure, and impactful research in Complex Networks and AI by Complexity. His publication record, citations, and involvement in high-quality research collaborations position him as a highly deserving researcher. Strengthening his industry impact, increasing citations, and taking on more leadership roles in research projects would further solidify his case for this prestigious award.

Dongdong An | Graph Neural Networks | Best Researcher Award

Assist. Prof. Dr. Dongdong An | Graph Neural Networks | Best Researcher Award

Lecture at Shanghai Normal University, Chinađź“–

Dr. AN Dongdong is a lecturer at Shanghai Normal University in the College of Information and Mechanical & Electrical Engineering. He has a strong academic background with a focus on the security and verification of AI and cyber-physical systems. His work, including research on Graph Neural Networks and dynamic verification, has contributed significantly to advancing the reliability and security of AI applications. Dr. An is also actively involved in several research projects funded by prestigious institutions like the National Natural Science Foundation of China.

Profile

Scopus Profile

Orcid Profile

Education Background🎓

  1. Ph.D. in Software Engineering (2013–2020), East China Normal University
    Supervisor: Prof. Jing Liu
  2. Master’s Program (2016–2018), French National Institute for Research in Computer Science and Automation (INRIA), Joint Training with Robert de Simone
  3. Bachelor’s in Software Engineering (2009–2013), East China Normal University

Professional Experience🌱

  1. Lecturer (2020–Present), Shanghai Normal University, College of Information and Mechanical & Electrical Engineering
  2. Researcher (2016–2018), INRIA, France, with Robert de Simone on advanced security modeling and verification techniques in AI
  3. Ph.D. Candidate (2013–2020), East China Normal University, School of Software Engineering, under the supervision of Prof. Jing Liu
Research Interests🔬
  • Verifiable and Efficient Security Training for Graph Neural Networks
  • Security Modeling and Verification of Trustworthy AI Systems
  • Uncertainty Modeling and Dynamic Verification for Cyber-Physical-Social Systems

Author Metrics

1. Total Publications: 6 (including journal and conference papers)

2. Notable Publications:

  • Dongdong An, Zongxu Pan, Xin Gao et al., stohMCharts: A Modeling Framework for Quantitative Performance Evaluation of Cyber-Physical-Social Systems, IEEE Access, 2023.
  • Dongdong An, Jing Liu, Xiaohong Chen, Haiying Sun, Formal modeling and dynamic verification for human cyber-physical systems under uncertain environment, Journal of Software, 2021.
  • Dongdong An, Jing Liu*, Min Zhang, et al., Uncertainty modeling and runtime verification for autonomous vehicles driving control, Journal of Systems and Software, 2020.

Dr. An’s work is widely recognized for its contributions to AI system security, with a particular focus on improving system verification under uncertainty, and developing more robust AI models for real-world applications.

Publications Top Notes đź“„

1. TaneNet: Two-Level Attention Network Based on Emojis for Sentiment Analysis

  • Authors: Zhao, Q., Wu, P., Lian, J., An, D., Li, M.
  • Journal: IEEE Access
  • Year: 2024
  • Volume: 12
  • Pages: 86106–86119
  • Citations: 0

2. Louvain-Based Fusion of Topology and Attribute Structure of Social Networks

  • Authors: Zhao, Q., Miao, Y., Lian, J., Li, X., An, D.
  • Journal: Computing and Informatics
  • Year: 2024
  • Volume: 43(1)
  • Pages: 94–125
  • Citations: 0

3. HGNN-QSSA: Heterogeneous Graph Neural Networks With Quantitative Sampling and Structure-Aware Attention

  • Authors: Zhao, Q., Miao, Y., An, D., Lian, J., Li, M.
  • Journal: IEEE Access
  • Year: 2024
  • Volume: 12
  • Pages: 25512–25524
  • Citations: 1

4. Modeling Structured Dependency Tree with Graph Convolutional Networks for Aspect-Level Sentiment Classification

  • Authors: Zhao, Q., Yang, F., An, D., Lian, J.
  • Journal: Sensors
  • Year: 2024
  • Volume: 24(2)
  • Article Number: 418
  • Citations: 12

5. Sentiment Analysis Based on Heterogeneous Multi-Relation Signed Network

  • Authors: Zhao, Q., Yu, C., Huang, J., Lian, J., An, D.
  • Journal: Mathematics
  • Year: 2024
  • Volume: 12(2)
  • Article Number: 331
  • Citations: 2

Conclusion

Dr. Dongdong An is a highly deserving candidate for the Best Researcher Award due to his innovative contributions to AI security, particularly in the areas of Graph Neural Networks, uncertainty modeling, and dynamic verification. His academic credentials, research publications, and involvement in high-impact research projects make him a prominent figure in his field. With improvements in citation outreach, interdisciplinary collaboration, and practical applications, Dr. An has the potential to make even greater strides in the research community, further enhancing the trustworthiness and security of AI systems globally.

Final Recommendation:

Dr. Dongdong An’s pioneering work in the security of AI systems and Graph Neural Networks places him at the forefront of AI research. His commitment to improving the reliability and security of AI models makes him a worthy candidate for the Best Researcher Award.