Aakash Kumar | Deep Learning | Best Researcher Award

Dr. Aakash Kumar | Deep Learning | Best Researcher Award

Postdoc Researcher at Zhongshan Institute of Changchun University of Science and Technology, China.

Dr. Aakash Kumar is a dedicated researcher in control science and engineering, with expertise in deep learning, machine learning, and artificial intelligence applications. He is currently a Postdoctoral Researcher at Zhongshan Institute of Changchun University of Science and Technology in China. His work focuses on developing computational techniques to optimize deep neural networks for image analysis and robotic systems. Throughout his career, Dr. Kumar has contributed to cutting-edge research in AI-driven fault detection, spiking neural networks, and generative models. Fluent in English, Chinese, Urdu, and Sindhi, he has built an international academic and professional profile.

Professional Profile:

Scopus

Orcid

Google Scholar

Education Background

Dr. Kumar earned his Doctor of Engineering in Control Science and Engineering from the University of Science and Technology of China (USTC) in 2022. His research was fully funded by the Chinese Academy of Sciences-The World Academy of Sciences President’s Fellowship. Prior to this, he obtained his Master of Engineering in Control Science and Engineering from USTC in 2017 under the Chinese Government Scholarship. He also completed a Diploma in Chinese Language (HSK-4 Level) at Anhui Normal University in 2014. His academic journey began with a Bachelor of Science in Electronic Engineering from the University of Sindh, Jamshoro, Pakistan, in 2011.

Professional Development

Since 2022, Dr. Kumar has been serving as a Postdoctoral Researcher at Zhongshan Institute of Changchun University of Science and Technology, where he is engaged in pioneering work on deep learning applications, computational intelligence, and machine learning-based fault detection. Prior to this, he worked remotely as a Machine Learning Engineer at COSIMA.AI Inc., New York, where he developed AI models for healthcare, computer vision, and smart systems. His early career included roles as a Data Scientist at Japan Cooperation Agency in Pakistan (2012–2013), where he analyzed agricultural and livestock data using statistical tools, and as a Lecturer at The Pioneers College, Jamshoro (2011–2012).

Research Focus

Dr. Kumar’s research focuses on the optimization of deep neural networks, reinforcement learning, and computational intelligence. His notable projects include the development of a Deep Spiking Q-Network (DSQN) for mobile robot path planning, a CNN-LSTM-AM framework for UAV fault detection, and a Deep Conditional Generative Model for Dictionary Learning (DCGMDL) to enhance classification efficiency. His interests extend to collaborative data analysis, regression modeling, clustering techniques, and Bayesian networks. He is also actively guiding research scholars, including two Ph.D. candidates and a master’s student.

Author Metrics:

Dr. Kumar has presented his research at prestigious conferences, including the International Symposium of Space Optical Instrument and Application in Beijing and academic meetings at USTC. His work on generative AI, deep learning, and autonomous systems has been recognized in academic circles. He has also served as a reviewer for reputed journals such as Neural Processing LettersJournal of Machine Learning and CyberneticsThe Big Data, and Neural Computing and Applications, all published by Springer. His contributions to AI research and computational intelligence have garnered citations, reflecting his impact in the field.

Honors & Awards

Dr. Kumar has received multiple prestigious scholarships and fellowships, including the Chinese Academy of Sciences-The World Academy of Sciences President’s Fellowship for his Ph.D. and the Chinese Government Scholarship for both his master’s degree and language studies. He has been recognized for his contributions to AI and deep learning applications in autonomous systems, earning invitations to present his work at international conferences. Additionally, his innovative projects in AI-driven fault detection and predictive modeling have gained recognition in the research community.

Publication Top Notes

1. Pruning filters with L1-norm and capped L1-norm for CNN compression

  • Authors: A Kumar, AM Shaikh, Y Li, H Bilal, B Yin
  • Journal: Applied Intelligence
  • Volume: 51, Pages: 1152-1160
  • Citations: 144 (2021)
  • Key Contribution:
    • Introduced an L1-norm and capped L1-norm-based pruning method for CNN model compression.
    • Reduced redundant filters, leading to efficient deep learning models with lower computational cost and minimal performance degradation.

2. Jerk-bounded trajectory planning for rotary flexible joint manipulator: an experimental approach

  • Authors: H Bilal, B Yin, A Kumar, M Ali, J Zhang, J Yao
  • Journal: Soft Computing
  • Volume: 27 (7), Pages: 4029-4039
  • Citations: 115 (2023)
  • Key Contribution:
    • Developed a jerk-bounded trajectory planning method to improve the performance of a rotary flexible joint manipulator.
    • Conducted experimental validation, proving improved stability and accuracy in robotic movement.

3. Real-time lane detection and tracking for advanced driver assistance systems

  • Authors: H Bilal, B Yin, J Khan, L Wang, J Zhang, A Kumar
  • Conference: 2019 Chinese Control Conference (CCC)
  • Pages: 6772-6777
  • Citations: 99 (2019)
  • Key Contribution:
    • Proposed a real-time lane detection and tracking system for ADAS (Advanced Driver Assistance Systems).
    • Used computer vision and deep learning to enhance road safety and autonomous driving technologies.

4. Reduction of multiplications in convolutional neural networks

  • Authors: M Ali, B Yin, A Kumar, AM Sheikh, H Bilal
  • Conference: 2020 39th Chinese Control Conference (CCC)
  • Pages: 7406-7411
  • Citations: 85 (2020)
  • Key Contribution:
    • Developed a method to reduce the number of multiplications in CNN computations, improving efficiency.
    • Aimed at hardware acceleration for deep learning models.

5. Using feature entropy to guide filter pruning for efficient convolutional networks

  • Authors: Y Li, L Wang, S Peng, A Kumar, B Yin
  • Conference: Artificial Neural Networks and Machine Learning – ICANN 2019: Deep Learning
  • Citations: 16 (2019)
  • Key Contribution:
    • Introduced feature entropy-based filter pruning to optimize CNN performance while maintaining accuracy.
    • Focused on reducing computational complexity in deep learning applications.

Conclusion

Dr. Aakash Kumar is an exceptional candidate for the Best Researcher Award due to his strong publication record, impactful AI research, interdisciplinary contributions, and academic leadership. His high citation count, expertise in CNN compression, deep learning efficiency, and AI-driven fault detection, along with his postdoctoral research at a leading Chinese university, make him a compelling nominee.

To further strengthen his candidacy, expanding into patents, industry applications, and first-author publications in top AI journals would enhance his global research impact.

Zhi Gao | Vision-Language Models | Best Researcher Award

Dr. Zhi Gao | Vision-Language Models | Best Researcher Award

Postdoctoral Research Fellow at Peking University, China.

Dr. Zhi Gao is a Postdoctoral Research Fellow at the School of Intelligence Science and Technology, Peking University. His research focuses on multimodal learning, vision-language models, and human-robot interaction. With expertise in computer vision and machine learning, he explores the development of intelligent agents capable of understanding and interacting with complex environments.

Professional Profile:

Google Scholar Profile

Education Background 🎓📖

  • Ph.D. in Computer Science and Technology, Beijing Institute of Technology (2018–2023)
  • Master in Computer Science and Technology, Beijing Institute of Technology (2017–2018)
  • B.S. in Computer Science and Technology, Beijing Institute of Technology (2013–2017)

Professional Development 📈💡

Dr. Gao is currently a Postdoctoral Research Fellow at Peking University under the supervision of Prof. Song-Chun Zhu, focusing on multimodal learning and agent development. Concurrently, he serves as a Research Scientist at the Beijing Institute for General Artificial Intelligence, working on vision-language models in the Machine Learning Lab. His research integrates deep learning, data representation, and human-centered AI to enhance machine perception and reasoning.

Research Focus 🔬📖

His work spans computer vision and machine learning, particularly in developing multimodal agents capable of learning from human-robot interactions and adapting to dynamic environments. He is also interested in leveraging the geometry of data space to address challenges such as insufficient annotations and distribution shifts.

Author Metrics

  • Publications in top-tier AI and computer vision conferences and journals
  • Research contributions in multimodal intelligence, vision-language understanding, and AI-driven reasoning

Awards & Honors 🏆🎖️

  • National Science Foundation for Young Scientists of China (2025–2027) for research on Riemannian multimodal large language models for video understanding
  • Distinguished Dissertation Award from SIGAI CHINA (October 202X)

Publication Top Notes

1. A Hyperbolic-to-Hyperbolic Graph Convolutional Network

Authors: Jindou Dai, Yuwei Wu, Zhi Gao, Yunde Jia
Published in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 154-163
Abstract: This paper introduces a hyperbolic-to-hyperbolic graph convolutional network (H2H-GCN) that operates directly on hyperbolic manifolds. The proposed method includes a manifold-preserving graph convolution with hyperbolic feature transformation and neighborhood aggregation, avoiding distortions from tangent space approximations. Extensive experiments demonstrate substantial improvements in tasks such as link prediction, node classification, and graph classification.

2. Curvature Generation in Curved Spaces for Few-Shot Learning

Authors: Zhi Gao, Yuwei Wu, Yunde Jia, Mehrtash Harandi
Published in: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 8671-8680
Abstract: This research addresses few-shot learning by proposing task-aware curved embedding spaces using hyperbolic geometry. By generating task-specific embedding spaces with appropriate curvatures, the method enhances the generality of embeddings. The study leverages intra-class and inter-class context information to create discriminative class prototypes, showing benefits over existing embedding methods in both inductive and transductive few-shot learning scenarios.

3. Deep Convolutional Network with Locality and Sparsity Constraints for Texture Classification

Authors: Xiaoyu Bu, Yuwei Wu, Zhi Gao, Yunde Jia
Published in: Pattern Recognition, Volume 91, 2019, Pages 34-46
Abstract: This paper presents a deep convolutional network incorporating locality and sparsity constraints to improve texture classification. The proposed model enhances feature representation by enforcing local connectivity and sparse activation, leading to improved classification performance on texture datasets.

4. Meta-Causal Learning for Single Domain Generalization

Authors: Jianlong Chen, Zhi Gao, Xiaodan Wu, Jiebo Luo
Published in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023
Abstract: The study introduces a meta-causal learning framework aimed at enhancing generalization in single-domain settings. By leveraging causal relationships within the data, the approach seeks to improve model robustness when applied to unseen domains, addressing challenges in domain generalization.

5. A Robust Distance Measure for Similarity-Based Classification on the SPD Manifold

Authors: Zhi Gao, Yuwei Wu, Mehrtash Harandi, Yunde Jia
Published in: IEEE Transactions on Neural Networks and Learning Systems, Volume 31, Issue 9, 2019, Pages 3230-3244
Abstract: This research proposes a robust distance measure tailored for similarity-based classification tasks on the Symmetric Positive Definite (SPD) manifold. The developed measure enhances classification accuracy by effectively capturing the intrinsic geometry of the SPD manifold, demonstrating robustness in various similarity-based classification scenarios.

Conclusion:

Dr. Zhi Gao is a strong candidate for the Best Researcher Award, given his groundbreaking contributions in vision-language models, hyperbolic learning, and multimodal AI. His strong academic background, top-tier publications, and national recognition make him a well-qualified nominee. However, to further strengthen his impact, he could focus on industry collaborations, real-world AI applications, and global AI leadership.

Verdict:Highly suitable for the Best Researcher Award with minor areas of improvement for long-term impact.