Faisal Alshami | Machine Learning | Best Researcher Award

Faisal Alshami | Machine Learning | Best Researcher Award

Dalian University of Technology | China

Author Profile

Google Scholar

Early Academic Pursuits

Faisal Alshami’s academic journey reflects a deep commitment to software engineering and technological innovation. He began his undergraduate studies at Sana’a University, Yemen, earning a BSc in Network Technology and Computer Security (2008–2012). His undergraduate thesis, “General Management System for Plant Protection,” showcased his early ability to integrate security and system management using ASP.NET, C#, and VPN with OSPF protocols, signaling his strong foundation in both networking and software development. Building on this groundwork, Faisal pursued a Master’s in Software Engineering at Northeastern University, China (2019–2022), where he specialized in advanced machine learning techniques. His master’s thesis, “Design and Implementation of Web API Recommendation System Based on Deep Learning,” utilized CNN, BLSTM, K-modes, and Word2Vec, demonstrating his growing expertise in AI-driven software solutions. Currently, Faisal is advancing his academic pursuits with a PhD in Software Engineering at Dalian University of Technology, China, focusing on federated learning, distributed systems, blockchain, edge computing, and graph neural networks (GNNs).

Professional Endeavors

Alongside his academic progression, Faisal has accumulated over 5 years of professional experience in the software and networking industry. His early career as a VoIP Engineer/Developer at Communication Services Company (2013–2015) allowed him to develop communication APIs and optimize large-scale systems. As a Network Manager and Systems Engineer at EliteTecs (2015–2016), he designed high-reliability networks using advanced protocols such as OSPF, EIGRP, and WiMAX, showcasing his expertise in secure and resilient infrastructures. His role as Full-Stack Developer and DevOps Lead at Almorisi Exchange Company (2016–2018) highlighted his ability to manage mission-critical systems with real-time performance and security. Here, Faisal excelled in building scalable architectures, simulation frameworks, and automated DevOps pipelines, which contributed to operational excellence.

Contributions and Research Focus

Faisal’s research is strategically positioned at the intersection of distributed systems, intelligent computing, and aerospace applications. His focus includes:

  • Federated learning and secure communication for multi-agent systems such as satellite constellations.

  • Edge computing and real-time distributed systems tailored for resource-constrained environments.

  • Robust machine learning frameworks for aerospace, automation, and high-reliability embedded systems.

  • Blockchain integration with AI to enhance security in data networks.

  • Simulation and testing methodologies to ensure fault tolerance in mission-critical software.
    This body of research reflects his ambition to address pressing challenges in space exploration, aerospace engineering, and advanced communication networks.

Impact and Influence

Faisal’s impact lies in bridging the gap between theory and applied innovation. His academic research is not confined to publications alone but extends into real-world applications in secure communications, high-availability systems, and intelligent software architectures. By combining his professional experience with cutting-edge research, Faisal has influenced the fields of network security, distributed computing, and AI-driven system optimization, making his contributions valuable to both academia and industry.

Academic Cites

His work has strong potential for academic citations due to its interdisciplinary nature—linking software engineering, AI, networking, and aerospace technologies. His focus on federated learning, blockchain, and edge computing positions his research at the forefront of emerging scholarly and industrial discussions, ensuring that his publications will attract citations in journals focusing on AI, distributed systems, cybersecurity, and aerospace software engineering.

Legacy and Future Contributions

Faisal Alshami is on a trajectory to build a lasting legacy in intelligent, secure, and scalable software engineering systems. His research is particularly impactful in aerospace applications and secure communications, areas that are becoming increasingly vital in a digital and space-driven era. As he progresses with his doctoral research, Faisal is expected to contribute significantly to the development of resilient federated learning frameworks, advanced distributed architectures, and mission-critical simulations. His blend of academic depth and industry experience ensures that his future work will leave a lasting influence on next-generation computing systems and aerospace engineering technologies.

Other Notable Highlights

  • Certifications: Faisal holds multiple certifications, including Neural Networks & Deep Learning (DeepLearning.AI), CCNP, CCNA, and advanced language certifications (Chinese HSK4, English YALI).

  • Training: He gained practical exposure at NEUSOFT Project Training, where he contributed to developing the Borrow-Seller System (BSS) using Java, Spring Boot, Vue.js, and Android Studio.

  • Core Competencies: His expertise spans software architecture, DevOps, distributed systems, full-stack development, secure networking, and agile collaboration.

Conclusion

In conclusion, Faisal Alshami is an emerging leader in the domain of software engineering, distributed systems, and intelligent computing. His academic journey, professional experiences, and research pursuits demonstrate a rare combination of technical mastery, innovation, and practical problem-solving skills. With his ongoing doctoral work and focus on future technologies such as federated learning, blockchain, and aerospace applications, Faisal is poised to make significant contributions that will influence both academia and industry for years to come.

Notable Publications

"A detailed analysis of benchmark datasets for network intrusion detection system

  • Author: M Ghurab, G Gaphari, F Alshami, R Alshamy, S Othman
  • Journal: Asian Journal of Research in Computer Science
  • Year: 2021

"Intrusion detection model for imbalanced dataset using SMOTE and random forest algorithm

  • Author: R Alshamy, M Ghurab, S Othman, F Alshami
  • Journal: International Conference on Advances in Cyber Security
  • Year: 2021

 

 

Basil Duwa| Machine learning | Best Researcher Award

Assist. Prof. Dr. Basil Duwa | Machine learning | Best Researcher Award

Operational Center in Healthcare at Near East University, Turkey

Dr. Basil B. Duwa is a results-oriented biomedical data scientist and engineer with expertise in clinical bioinformatics, machine learning for disease prediction, and medical device innovation. With over five years of research and practical experience in healthcare data science, Dr. Duwa has made notable contributions to parasitology-focused AI, wearable sensor analysis, and multi-criteria decision-making in healthcare. He currently serves as an Assistant Professor and Postdoctoral Fellow at the Operational Research Center in Healthcare, Near East University, where he integrates AI and biomedical engineering for real-world medical applications.

Professional Profile:

Orcid

Google Scholar

Education Background

    • Ph.D. in Biomedical Engineering (Specialization: Biomedical Data Science & Bioinformatics)
      Near East University, Nicosia, Cyprus (2021–2023)

    • M.Sc. in Biomedical Engineering (Specialization: Data Science & Decision Analysis)
      Near East University, Nicosia, Cyprus (2019–2021)

    • Postgraduate Diploma in Education
      National Teacher’s Institute, Kaduna (2018–2019)

    • B.Sc. in Biological Sciences (Zoology & Parasitology)
      Adamawa State University, Nigeria (2014–2018)

Professional Development
  • Assistant Professor & Postdoctoral Fellow
    Near East University, Cyprus (2024–Present)

    • Lead AI research in healthcare, predictive modeling, and telemedicine systems.

    • Co-authored a book on medical device applications published by Elsevier.

  • Clinical Informatics Researcher
    Operational Research Center in Healthcare (2022–2024)

    • Developed AI models for disease prediction including malaria and COVID-19.

    • Integrated MCDM methods into healthcare analytics.

  • Research Assistant – Biomedical Data Science
    Near East University (2020–2022)

    • Focused on predictive models and decision systems for biomedical challenges.

  • Monitoring & Evaluation Data Analyst
    Plan International & Save the Children (2012–2018)

    • Evaluated child health and education data; developed analytical dashboards.

Research Focus

Dr. Duwa’s interdisciplinary research combines machine learning, bioinformatics, data visualization, and medical device design. His key interests include:

  • AI-driven disease prediction and diagnostics

  • Wearable sensor data analytics

  • Explainable AI in biomedical decision-making

  • Multi-criteria decision analysis (MCDM) in healthcare

  • Federated learning and clinical applications of AI

Author Metrics:

  • ORCID: 0000-0002-1690-6830

  • Google Scholar Citations: View Profile

  • Publications: 25+ in peer-reviewed journals including Diagnostics, Journal of Instrumentation, and Springer Conference Proceedings

  • Books & Chapters: Co-authored over 10 chapters in books published by Academic Press and Springer

  • Notable Works:

    • Quantitative Forecasting of Malaria Parasite Using Machine Learning

    • Computer-Aided Detection of Monkeypox Using Deep Learning

    • Brain PET Scintillation Crystal Evaluation using MCDM

Awards and Honors:

  • 🏆 Young Researcher Award – Near East University, Cyprus (2023 & 2022)

  • 🥇 Best Essay Award – NAFDAC Consumer Safety Club, Nigeria (2004)

  • 🎓 Article Reviewer – MDPI, Taylor & Francis, Expert Systems, Applied Mathematics in Science & Engineering (2020–2025)

Publication Top Notes

1. Second-Order Based Ensemble Machine Learning Technique for Modelling River Water Biological Oxygen Demand (BOD): Insights into Improved Learning

Authors: A.G. Usman, M. Almousa, H. Daud, B.B. Duwa, A.A. Suleiman, A.I. Ishaq, …
Journal: Journal of Radiation Research and Applied Sciences
Volume: 18(2)
Article: 101439
Year: 2025
Summary: Developed a second-order ensemble machine learning framework to model and predict BOD levels in rivers, improving environmental monitoring accuracy.

🧠 Focus Area: Environmental ML Modeling / Ensemble Learning

2. Enhanced Drug Classification for Cancers of the Liver with Multi-Criteria Decision-Making Method – PROMETHEE

Authors: B.B. Duwa, N. Usanase, B. Uzun
Journal: Global Journal of Sciences
Volume: 2(1), pp. 24–36
Year: 2025
Summary: Applied PROMETHEE (MCDM) for liver cancer drug classification, improving clinical decision-making through structured and explainable evaluation.

💊 Focus Area: Drug Classification / MCDM / Oncology

3. Improving Telemedicine with Digital Twin-Driven Machine Learning: A Novel Framework

Authors: I. Goni, B. Bali, B.M. Ahmad, B.B. Duwa, C. Iwendi
Journal: Global Journal of Sciences
Volume: 1(2), pp. 58–70
Year: 2025
Summary: Introduces a digital twin-powered machine learning architecture to enhance predictive diagnostics in telemedicine systems.

🌐 Focus Area: Telemedicine / Digital Twins / AI in Healthcare

4. Reply to Graña et al. Comment on “Uzun Ozsahin et al. COVID-19 Prediction Using Black-Box Based Pearson Correlation Approach”

Authors: D. Uzun Ozsahin, E. Precious Onakpojeruo, B. Bartholomew Duwa, …
Journal: Diagnostics
Volume: 14(22), Article: 2529
Year: 2024
Summary: A formal response clarifying methodological insights and addressing critiques on a previously published AI model for COVID-19 prediction.

🧬 Focus Area: Model Interpretability / COVID-19 Forecasting

5. Ensemble Predictive Modeling for Dementia Diagnosis

Authors: B.B. Duwa, E.P. Onakpojeruo, B. Uzun, A.J. Hussain, I. Ozsahin, L.R. David, …
Conference: 17th International Conference on Development in eSystem Engineering (DeSE)
Year: 2024
Summary: Demonstrates the power of ensemble ML techniques in diagnosing dementia, integrating multiple model architectures for increased diagnostic precision.

🧠 Focus Area: Medical AI / Cognitive Disorders / Ensemble Learning

Conclusion

Assist. Prof. Dr. Basil B. Duwa is a highly accomplished and innovative biomedical researcher whose work has real-world impact in predictive healthcare, disease diagnostics, and AI-based decision systems. His multi-disciplinary approach, prolific publishing, and novel applications of machine learning in both clinical and environmental contexts make him a strong and deserving candidate for the Best Researcher Award.

Verdict:
Recommended with distinction for the Best Researcher Award in Biomedical Data Science and Machine Learning in Healthcare.