Tumlumbe Juliana Chengula – Computer Vision
Tumlumbe Juliana Chengula a distinguished academic and researcher in the field of Computer Vision. He possesses proficiency in several programming languages, with a focus on Python. His expertise extends to utilizing various tools such as Tableau, QGIS, PyTorch, and Tensorflow, showcasing a well-rounded skill set in data science and machine learning. Additionally, he has earned certifications in Data Science Tools, SQL for Data Science, and Machine Learning with Python, all from IBM. Furthermore, he has completed the “Using Python for Research” certification from Harvard University, underscoring his commitment to continuous learning and staying at the forefront of relevant technologies in the field. These skills and honors collectively highlight his comprehensive knowledge and dedication to the dynamic and evolving realm of data science.
Eduvation
His master’s studies at Amirkabir University of Technology (AUT) in Tehran, Iran, from September 2018 to October 2021, he specialized in Electrical Engineering with a focus on Control. During this period, he maintained a GPA of 3.5/4, and his final project earned a perfect score of 4/4. Prior to his master’s degree, he completed his Bachelor’s in Power Electrical Engineering at Yazd University, Iran, from September 2014 to August 2018, achieving a GPA of 3.1/4.
As a Graduate Research Assistant at South Carolina State University since August 2022, she has been actively engaged in the collection, recording, and analysis of transportation data, utilizing proficient tools such as Python, Tableau, PowerBI, and QGIS. Her research focus involves the application of cutting-edge technologies, including Machine Learning, Deep Learning, and Artificial Intelligence, to address challenges within the transportation industry.
Improving road safety with ensemble learning: Detecting driver anomalies using vehicle inbuilt cameras