Ali Nikoutadbir | Intelligent Transportation Systems | Young Researcher Award

Mr. Ali Nikoutadbir | Intelligent Transportation Systems | Young Researcher Award

Tarbiat Modares University Faculty of Electrical and Computer Engineering | Iran

Ali Nikoutadbir is a motivated and results-driven MSc graduate in Electrical Engineering with over six years of research experience in securing cyber-physical systems (CPS), particularly focusing on multi-agent systems and intelligent transportation networks. His expertise lies in developing innovative graph-theoretic and optimization-based algorithms to tackle challenges in distributed coordination control, event-triggered control, and the resilience of industrial CPS. As a Research Assistant at the Control System Science Lab, Tarbiat Modares University, Tehran, Iran (2020–2023), he designed and implemented a novel secure event-triggered control framework for vehicular platoons to counter dual deception attacks, including false data injection and global manipulation. He also developed static and dynamic event-triggering schemes ensuring secure consensus under stringent attack constraints and introduced a topology-switching strategy based on Schur stability to enhance system resilience. His theoretical advancements were validated through extensive MATLAB/Simulink simulations. Ali’s published work, including “Secure event-triggered control for vehicle platooning against dual deception attacks,” forms the foundation of his contributions to CPS security. His research expertise encompasses securing multi-agent networks against deception attacks using graph-theoretic and optimization-based methodologies, stability analysis, and end-to-end system modeling, design, and validation.

Profiles: Google Scholar

Featured Publications

"Secure event-triggered control for vehicle platooning in the presence of modification attacks"

"Secure event-triggered control for vehicle platooning against dual deception attacks"

"Estimation of the error caused by the vibration of the radar in the SAR radar aperture using the analytical condition empirical method"

Ambreen Basheer | Autonomous Control Systems | Best Researcher Award

Ms. Ambreen Basheer | Autonomous Control Systems | Best Researcher Award

University of Science and Technology of China | Pakistan

Author Profile

Scopus

Academic and Research Profile of Ambreen Basheer

Early Academic Pursuits

Ambreen Basheer demonstrated academic excellence from an early stage, excelling in both science and engineering disciplines. She did undergraduate in Electrical Engineering at the University of Punjab reflects her commitment to technical rigor. She pursued her Master's studies in system engineering with a specialization in the control system domain at the Pakistan Institute of Engineering and Applied Sciences (PIEAS), Pakistan. Building on this achievement and her solid understanding of the control system design, she has been awarded the ANSO fellowship for her PhD studies at the Department of Automation, University of Science and Technology of China.

Professional Endeavors

Ambreen's research and professional development are characterized by a focused integration of theoretical rigor, which is suitable for practical application. Her work is
primarily situated in the domain of advanced control systems, with a specific emphasis on developing online learning-based methodologies for complex dynamical systems. She possesses deep expertise in the design and stability analysis of adaptive, robust, and nonlinear controllers, often employing Lyapunov-based techniques. A central thrust of her research involves the synthesis of safe online reinforcement learning optimal control. Her research program is centered on the design and analysis of advanced control systems.

Contributions and Research Focus

Her research trajectory began with her Bachelor’s project on Wireless SCADA for Industrial Automation, exploring innovative applications of sensors, microcontrollers, and wireless communication. This technical curiosity deepened during her MS in Systems Engineering (PIEAS), where she published on multi-agent consensus and adaptive control. Currently, as a PhD scholar at the University of Science and Technology of China, her research centers on Control Theory and Control Engineering, with a strong emphasis on:

  • Online learning-based control systems
  • Safe trajectory tracking
  • Dynamic obstacle avoidance
  • Kernel-based modeling and barrier functions

Her multiple publications in high-impact journals and IEEE conferences underscore her contributions to autonomous systems and resilient control architectures.

Impact and Influence

Ambreen’s work bridges theory with real-world applications, particularly in safe robotics, vehicle automation, and industrial process optimization. Her research has been published in globally recognized journals such as the Journal of the Franklin Institute, IEEE Transaction, and Applied Mathematics and Computation. By integrating machine learning techniques with nonlinear control systems, she has advanced solutions that improve safety, adaptability, and efficiency in dynamic environments

Academic Citations

With multiple journal publications and international conference proceedings, Ambreen’s scholarly contributions are beginning to gain traction in academic circles. Her citations
are steadily growing as her work addresses cutting-edge challenges in control engineering and autonomous systems, marking her as a rising researcher in engineering sciences.

Legacy and Future Contributions

Ambreen’s journey reflects a blend of academic brilliance, professional adaptability, and innovative research. With expertise spanning engineering systems, intelligent control
systems , and control theory, she stands poised to make cross-disciplinary contributions. Her future research is likely to focus on intelligent automation, resilient networked
systems, and AI-driven control applications, contributing to both industrial innovation and academic knowledge.

Conclusion

Ambreen Basheer represents a new generation of scholars who combine technical mastery with applied problem-solving. Her progression from strong academic
foundations to impactful research demonstrates her dedication to advancing knowledge in control systems, automation, and intelligent engineering applications. With her
international academic exposure and growing publication record, she is well-positioned to leave a lasting legacy in research and higher education.

Notable Publications

“Approximate Optimal Trajectory Tracking and Dynamic Obstacle Avoidance for Affine System via Online Learning

  • Author: Ambreen Basheer , Man Li , Jiahu Qin
  • Journal: Journal of the Franklin Institute
  • Year: 2025

“Online Learning Based Control for Mobile Vehicle to Avoid Static Obstacles via Kernel Based Safe Dynamic Model

  • Author: Somia KanwalAmbreen Basheer
  • Journal: Advanced Algorithms and Control Engineering
  • Year: 2024

“A novel approach for adaptive H-infinite leader-following consensus of higher-order locally Lipschitz multi-agent systems

  • Author: Ambreen Basheer; Muhammad Rehan; Muhammad Tufail,;Muhammad Ahsan Razaq
  • Journal: Advanced Mathematics and computation
  • Year: 2024