Yu Sha | Deep Learning | Best Researcher Award

Dr. Yu Sha | Deep Learning | Best Researcher Award

Yu Sha at Xidian University, China.

Yu Sha is a doctoral researcher specializing in artificial intelligence applications for cavitation detection and intensity recognition. He is pursuing a Doctor of Engineering at Xidian University, China, and was a visiting PhD student at the Frankfurt Institute for Advanced Studies, Germany. His research focuses on AI-driven fault detection in industrial systems, with multiple publications, patents, and academic honors to his name.

Professional Profile:

Scopus

Google Scholar

Education Background

1.  Xidian University, China (2019 – Present)

    • Ph.D. in Computer Science and Technology (College of Artificial Intelligence)
    • Research Focus: Cavitation detection and intensity recognition via deep learning
    • Anticipated Graduation: June 2024

2.  Frankfurt Institute for Advanced Studies, Germany (2020 – 2022)

    • Visiting PhD Researcher (Cavitation and leakage detection using AI)

3.  Lanzhou University of Technology, China (2015 – 2019)

    • B.Sc. in Information and Computing Science
    • Ranked 1st out of 54 students

Professional Development

Yu Sha has contributed to multiple research projects at Xidian University, including AI-driven battlefield situation analysis and decision-making. His work at the Frankfurt Institute for Advanced Studies focused on AI-based cavitation and leakage detection in large-scale pump and pipeline systems. His research expertise extends to deep learning, fault diagnosis in industrial systems, and reinforcement learning.

Research Focus

  • AI-driven cavitation detection and intensity recognition
  • Fault diagnosis and predictive maintenance in industrial systems
  • Deep learning and reinforcement learning applications in engineering

Author Metrics:

  • Publications: Articles accepted in high-impact journals like Machine Intelligence Research and Mechanical Systems and Signal Processing.
  • Conferences: Research presented at ACM SIGKDD and other international venues.
  • Patents: Multiple invention patents related to cavitation detection, face aging estimation, and heart rate estimation

Awards and Honors:

  • Outstanding Doctoral Student, Xidian University (2021, 2022)
  • Multiple Graduate Student Academic Scholarships (First & Second Level)
  • National Encouragement Scholarship (2016, 2017)
  • First Prize in multiple mathematical modeling and AI competitions, including MCM/ICM, MathorCup, and Teddy Cup Data Mining Challenge

Publication Top Notes

1. A Multi-Task Learning for Cavitation Detection and Cavitation Intensity Recognition of Valve Acoustic Signals

  • Authors: Yu Sha, Johannes Faber, Shuiping Gou, Bo Liu, Wei Li, Stefan Schramm, Horst Stoecker, Thomas Steckenreiter, Domagoj Vnucec, Nadine Wetzstein, Andreas Widl, Kai Zhou
  • Published In: Engineering Applications of Artificial Intelligence, Volume 113, August 2022, Article 104904
  • DOI: 10.1016/j.engappai.2022.104904
  • Publisher: Elsevier Ltd.
  • Abstract: The paper proposes a novel multi-task learning framework using 1-D double hierarchical residual networks (1-D DHRN) for simultaneous cavitation detection and cavitation intensity recognition in valve acoustic signals. The approach addresses challenges such as limited sample sizes and poor separability of cavitation states by employing data augmentation techniques and advanced neural network architectures. The framework demonstrated high prediction accuracies across multiple datasets, outperforming other deep learning models and conventional methods.
  • Access: The full paper is available at https://www.sciencedirect.com/science/article/pii/S0952197622001361

2. An Acoustic Signal Cavitation Detection Framework Based on XGBoost with Adaptive Selection Feature Engineering

  • Authors: Yu Sha, Johannes Faber, Shuiping Gou, Bo Liu, Wei Li, Stefan Schramm, Horst Stoecker, Thomas Steckenreiter, Domagoj Vnucec, Nadine Wetzstein, Andreas Widl, Kai Zhou
  • Published In: Measurement, Volume 192, June 2022, Article 110897
  • DOI: 10.1016/j.measurement.2022.110897
  • Publisher: Elsevier Ltd.
  • Abstract: This study introduces a framework combining XGBoost with adaptive selection feature engineering (ASFE) for detecting cavitation in valves using acoustic signals. The methodology includes data augmentation through a non-overlapping sliding window, feature extraction using fast Fourier transform (FFT), and adaptive feature engineering to enhance input features for the XGBoost algorithm. The framework achieved satisfactory prediction performance in both binary and four-class classifications, outperforming traditional XGBoost models.
  • Access: The full paper is available at https://www.sciencedirect.com/science/article/pii/S0263224122001798

3. Regional-Local Adversarially Learned One-Class Classifier Anomalous Sound Detection in Global Long-Term Space

  • Authors: Yu Sha, Shuiping Gou, Johannes Faber, Bo Liu, Wei Li, Stefan Schramm, Horst Stoecker, Thomas Steckenreiter, Domagoj Vnucec, Nadine Wetzstein, Andreas Widl, Kai Zhou
  • Published In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, August 2022
  • DOI: 10.1145/3534678.3539133
  • Publisher: Association for Computing Machinery (ACM)
  • Abstract: This paper introduces a multi-pattern adversarial learning one-class classification framework for anomalous sound detection (ASD) in mechanical equipment monitoring. The framework utilizes two auto-encoding generators to reconstruct normal acoustic data patterns, extending the discriminator’s role to distinguish between regional and local pattern reconstructions. A global filter layer is also presented to capture long-term interactions in the frequency domain without human priors. The proposed method demonstrated superior performance on four real-world datasets from different industrial domains, outperforming recent state-of-the-art ASD methods.
  • Access: The full paper is available at https://dl.acm.org/doi/10.1145/3534678.3539133

4. A Study on Small Magnitude Seismic Phase Identification Using 1D Deep Residual Neural Network

  • Authors: Wei Li, Megha Chakraborty, Yu Sha, Kai Zhou, Johannes Faber, Georg Rümpker, Horst Stöcker, Nishtha Srivastava
  • Published In: Artificial Intelligence in Geosciences, Volume 3, December 2022, Pages 115-122
  • DOI: 10.1016/j.aiig.2022.10.002
  • Publisher: KeAi Publishing Communications Ltd.
  • Abstract: This study develops a 1D deep Residual Neural Network (ResNet) to address the challenges of seismic signal detection and phase identification, particularly for small magnitude events or signals with low signal-to-noise ratios. The proposed method was trained and tested on datasets from the Southern California Seismic Network, demonstrating high accuracy and robustness in identifying seismic phases, thereby offering a valuable tool for seismic monitoring and analysis.
  • Access: The full paper is available at https://www.sciencedirect.com/science/article/pii/S2666544122000284

5. Deep Learning-Based Small Magnitude Earthquake Detection and Seismic Phase Classification

  • Authors: Wei Li, Yu Sha, Kai Zhou, Johannes Faber, Georg Ruempker, Horst Stoecker, Nishtha Srivastava
  • Published In: arXiv preprint arXiv:2204.02870, April 2022
  • DOI: N/A
  • Publisher: arXiv
  • Abstract: This paper investigates two deep learning-based models, namely 1D

Conclusion

Dr. Yu Sha is a highly deserving candidate for the Best Researcher Award due to his pioneering contributions to AI-driven cavitation detection, deep learning applications, and fault diagnosis in industrial systems. His strong academic record, international exposure, high-impact publications, and patent portfolio make him a standout researcher in deep learning for industrial applications. With further industry collaborations and expanded leadership roles, he could solidify his reputation as a global leader in AI-based fault detection.

An Zeng | Machine Learning | Best Researcher Award

Prof. An Zeng | Machine Learning | Best Researcher Award

Professor at Guangdong University of Technology, China📖

Professor Zeng An is a distinguished researcher with extensive expertise in machine learning, data mining technologies, and their applications in medicine. Her work has significantly contributed to the advancement of deep learning, neural networks, probabilistic models, rough set theory, genetic algorithms, and other optimization methods. Since her postdoctoral research at the National Research Council of Canada and Dalhousie University (2008–2011) under the guidance of Professor Kenneth Rockwood, Professor Xiaowei Song, and Professor Arnold Mitnitski, she has been dedicated to applying these computational techniques to clinical research on Alzheimer’s Disease (AD).

Profile

Scopus Profile

Education Background🎓

Professor Zeng An completed her postdoctoral research at the National Research Council of Canada, collaborating with leading experts in medical AI applications. She holds a Ph.D. in Computer Science with a focus on machine learning and data mining techniques for medical applications. Her academic journey also includes a master’s and a bachelor’s degree in computer science or related fields (specific institutions and years can be added if available).

Professional Experience🌱

With a career spanning academia and research, Professor Zeng An has held key positions in leading universities and research institutions. During her postdoctoral tenure (2008–2011), she worked at Dalhousie University’s Faculty of Computer Science and Faculty of Medicine, contributing to AI-driven clinical research on neurodegenerative diseases. She has since continued her work in academia, conducting research on advanced machine learning techniques, medical data analysis, and clinical decision support systems.

Research Interests🔬

Professor Zeng An’s research focuses on developing intelligent algorithms for medical applications, particularly in Alzheimer’s Disease diagnostics and prediction. She specializes in deep learning, neural networks, probabilistic models, genetic algorithms, and optimization techniques. Her work extends to clinical data mining, patient risk assessment, and AI-driven medical decision-making, significantly impacting precision medicine.

Author Metrics

Professor Zeng An has a strong publication record in high-impact journals and conferences related to machine learning, AI in healthcare, and medical informatics. Her work has received substantial citations, reflecting her influence in the field. Key metrics such as H-index, i10-index, and total citations further highlight her academic contributions (specific numbers can be added if available).

Awards & Honors

Throughout her career, Professor Zeng An has received prestigious awards and recognitions for her contributions to AI and medical research. Her collaborations with renowned scientists in AI-driven healthcare innovations have led to groundbreaking advancements in the field. She continues to be a leading figure in interdisciplinary research, bridging computer science and medicine for improved healthcare outcomes.

Publications Top Notes 📄

1. Reinforcement Learning-Based Method for Type B Aortic Dissection Localization

  • Authors: Zeng An, Xianyang Lin, Jingliang Zhao, Baoyao Yang, Xin Liu
  • Journal: Journal of Biomedical Engineering (Shengwu Yixue Gongchengxue Zazhi), 2024
  • Citations: 0
  • Summary: This study presents a reinforcement learning-based approach for accurately localizing Type B aortic dissection, improving diagnostic precision in medical imaging.

2. Progressive Deep Snake for Instance Boundary Extraction in Medical Images (Open Access)

  • Authors: Zixuan Tang, Bin Chen, Zeng An, Mengyuan Liu, Shen Zhao
  • Journal: Expert Systems with Applications, 2024
  • Citations: 2
  • Summary: The research introduces a progressive deep snake model to enhance boundary extraction in medical images, facilitating precise segmentation for clinical applications.

3. Multi-Scale Quaternion CNN and BiGRU with Cross Self-Attention Feature Fusion for Fault Diagnosis of Bearing

  • Authors: Huanbai Liu, Fanlong Zhang, Yin Tan, Shenghong Luo, Zeng An
  • Journal: Measurement Science and Technology, 2024
  • Citations: 1
  • Summary: This paper develops a multi-scale quaternion CNN and BiGRU model integrating cross self-attention feature fusion to enhance the accuracy of bearing fault diagnosis in industrial applications.

4. An Ensemble Model for Assisting Early Alzheimer’s Disease Diagnosis Based on Structural Magnetic Resonance Imaging with Dual-Time-Point Fusion

  • Authors: Zeng An, Jianbin Wang, Dan Pan, Wenge Chen, Juhua Wu
  • Journal: Journal of Biomedical Engineering (Shengwu Yixue Gongchengxue Zazhi), 2024
  • Citations: 0
  • Summary: The study proposes an ensemble model utilizing dual-time-point fusion of MRI scans to improve early detection and diagnosis of Alzheimer’s Disease.

5. FedDUS: Lung Tumor Segmentation on CT Images Through Federated Semi-Supervised Learning with Dynamic Update Strategy

  • Authors: Dan Wang, Chu Han, Zhen Zhang, Zhenwei Shi, Zaiyi Liu
  • Journal: Computer Methods and Programs in Biomedicine, 2024
  • Summary: This research introduces a federated semi-supervised learning framework with a dynamic update strategy for effective lung tumor segmentation in CT imaging.

Conclusion

Professor An Zeng is a highly qualified candidate for the Best Researcher Award, given her outstanding contributions to AI in medicine, deep learning, and computational diagnostics. Her strong publication record, international research experience, and interdisciplinary approach make her an excellent nominee. While expanding clinical collaborations and citation impact would further enhance her profile, her cutting-edge research already positions her as a leader in medical AI applications.