Taher Azdast | Gasification Research | Best Researcher Award

Prof. Taher Azdast | Gasification Research | Best Researcher Award

Urmia University | Iran

Author Profiles

Scopus

Orcid ID

Google Scholar

Early Academic Pursuits

Prof. Taher Azdast began his academic journey with a strong foundation in Mathematics and Physics during high school, followed by a B.Sc. in Mechanical Engineering (Manufacturing and Production) at Shahid Rajaee University, where he graduated as the top student. He continued his excellence through an M.Sc. at the University of Tehran, focusing on machining optimization, and further advanced to a Ph.D. at Tarbiat Modares University, where his dissertation centered on numerical and experimental studies of injection molding processes. His academic trajectory was consistently marked by high achievements, including ranking first in entrance exams and graduating top of his class at every level.

Professional Endeavors

Prof. Azdast has served in multiple prestigious academic and industrial roles. Beginning as a teaching and research assistant, he advanced to lecturer, assistant professor, associate professor, and ultimately professor of Mechanical Engineering at Urmia University, where he has been a driving force in research and teaching. His professional contributions extend beyond Iran, having undertaken multiple sabbatical and visiting professor positions at the University of Toronto, where he collaborated with leading experts in polymer foaming technologies. He has also held key administrative roles such as Vice-Chancellor for Education and head of various research groups, demonstrating leadership in both academic and institutional development.

Contributions and Research Focus

Prof. Azdast’s research has centered on micro- and nano-cellular foams, polymer composites, nanocomposites, plastic processing, 3D printing, welding of plastics, injection molding, extrusion, and gas/water-assisted molding technologies. He has been instrumental in advancing knowledge in polymeric foams, shrinkage behaviors of molded plastics, and manufacturing process optimization. His contributions have extended to practical applications, such as designing welding equipment for polyethylene pipes, improving coaxial cable transmission properties, and developing biodegradable PLA parts. Additionally, his work in neural optimization and response surface methodologies has bridged computational techniques with experimental engineering.

Impact and Influence

The influence of Prof. Azdast’s work is evident through his recognition as Top Researcher of Urmia University and Top Researcher of West Azerbaijan Province. His research has been applied in both academic and industrial settings, particularly in plastic manufacturing, automotive engineering, and telecommunication cable technology. He has mentored numerous students, fostering the growth of talented researchers and engineers, and has contributed to national-level projects under the Iranian National Elite Foundation. His role as guest editor of international journals highlights his influence in shaping global research trends in polymeric foams and composites.

Academic Citations and Recognition

Prof. Azdast’s scholarly contributions have been widely cited, reflecting their importance in the global academic community. His work has earned multiple Best Paper Awards at international conferences and journals, including recognition from the Science and Technology of Welding and Joining journal (UK) and the International Conference on Mechanical and Aerospace Engineering (Iran). These accolades underline both the originality and practical significance of his research. Furthermore, his consistent excellence since his early academic years demonstrates sustained impact over decades.

Legacy and Future Contributions

Prof. Azdast’s legacy lies in his pioneering research on polymer foaming technologies, plastic composites, and advanced manufacturing processes, which have had both scientific and industrial relevance. His dedication to mentoring and leading research groups ensures the continuity of innovation. Looking forward, his ongoing collaborations with international institutions and his leadership in national elite research projects position him to further advance sustainable materials, biodegradable polymers, and next-generation manufacturing technologies. His role as a guiding academic and researcher will continue to inspire future scholars in mechanical and materials engineering.

Conclusion

In conclusion, Prof. Taher Azdast stands out as an accomplished academic, an innovative researcher, and an influential mentor. His career reflects a rare blend of theoretical excellence, experimental innovation, and industrial application, making him highly deserving of recognition such as the Best Researcher Award. His contributions not only advance scientific knowledge but also create meaningful impact in technology and society, ensuring his continued role as a leading figure in mechanical engineering and materials science.

Notable Publications

“Thermochemical process of polypropylene plastic waste recovered from electric and electronic apparatuses-to-clean hydrogen energy

  • Author: Rezgar Hasanzadeh; Taher Azdast; Chul B. Park
  • Journal: International Journal of Hydrogen Energy
  • Year: 2025

“Auxetic 3D printed metastructure stents for enhanced mechanical and structural performance and biocompatibility in coronary artery treatments

  • Author: Rezgar Hasanzadeh; Saman Jolaiy; Mehran Mojaver; Taher Azdast; Chul B. Park
  • Journal: Acta Biomaterialia
  • Year: 2025

“Structure-negative Poisson’s ratio analysis and optimization in a novel additively manufactured polymeric hybrid auxetic metastructure via 3D printing, finite element analysis, and machine learning

  • Author: Saman Jolaiy; Rezgar Hasanzadeh; Mehran Mojaver; Taher Azdast
  • Journal: Smart Materials and Structures
  • Year: 2025

“Sound‐Insulation Performance of Polylactic Acid Parts 3D Printed by Fused Filament Fabrication with Functionally Graded Porous Structure for Effective Noise Reduction

  • Author: Reza Navidpour; Taher Azdast; Rezgar Hasanzadeh; Milad Moradian; Peyman Mihankhah; Asghar Rasouli
  • Journal: Macromolecular Materials and Engineering
  • Year: 2025

“Acrylonitrile butadiene styrene/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding with optimized performance

  • Author: Bashar Azerang; Taher Azdast; Ali Doniavi; Rezgar Hasanzadeh
  • Journal: Journal of Thermoplastic Composite Materials
  • Year: 2025