Chao Yuan | Machine Learning | Best Researcher Award

Dr. Chao Yuan | Machine Learning | Best Researcher Award

Associate Professor at Guangzhou University, China

Dr. Chao Yuan is a postdoctoral researcher at the School of Mathematics and Information Science, Guangzhou University, and a visiting scholar at Durham University, UK. He earned his Ph.D. in Computer Science and Technology from China Agricultural University in 2022. His research focuses on machine learning, particularly robust metric learning and nonlinear classification methods. Dr. Yuan has authored over fifteen high-impact journal articles in top-tier journals such as Knowledge-Based Systems, Neural Networks, and Information Sciences. His contributions span both theoretical advancements and practical implementations in areas like image denoising, signal reconstruction, and pattern classification. Known for his strong analytical mindset, innovative thinking, and team collaboration, Dr. Yuan is recognized for delivering results in complex research environments. With a clear vision for interdisciplinary exploration, he aims to bridge cutting-edge learning models with real-world intelligent systems. His career reflects dedication to academic excellence, continuous learning, and impactful scientific discovery.

Professional Profile:

Scopus

Education Background

Dr. Yuan earned his B.Sc. in Information and Computing Science from Weinan Normal University (2014), his M.Sc. in Computational Mathematics from Xi’an Polytechnic University (2018), and his Ph.D. in Computer Science and Technology from China Agricultural University (2022). His academic training bridges mathematics, computing, and artificial intelligence. During his Ph.D., he specialized in machine learning algorithms, robust metric learning, and classification techniques. His education laid a strong theoretical and computational foundation, equipping him with skills in optimization, signal analysis, and modeling. He has actively participated in research during all academic phases, contributing to publications and national projects. His academic journey reflects continuous growth from applied mathematics to cutting-edge intelligent computing.

Professional Development

Dr. Yuan is currently a postdoctoral researcher at Guangzhou University and a visiting scholar at Durham University (2023–2024) under the Guangdong Young Talents Program. He previously participated in multiple national projects during his doctoral research, focusing on sparse coding, manifold learning, and image set classification. He has experience in algorithm development, scientific publishing, and interdisciplinary collaboration. His professional work spans robust AI models, lightweight architectures for IoT, and biologically inspired computation. At Durham, he is currently researching swarm intelligence and robotic systems. Dr. Yuan brings practical innovation and academic rigor to his work, with a commitment to applied research and impactful discoveries.

Research Focus

Dr. Yuan’s research interests include machine learning, robust classification, nonlinear metric learning, sparse representation, image denoising, and manifold learning. He focuses on correntropy-based techniques and adaptive learning methods for noise-tolerant AI. His work also explores Riemannian manifold approaches, lightweight deep networks, and swarm intelligence for autonomous systems. He is passionate about developing efficient and interpretable models for real-world tasks, especially in constrained environments like IoT. Dr. Yuan is currently researching intelligent swarm systems, combining bio-inspired algorithms with AI. His long-term goal is to bridge theory and application, creating robust, scalable, and generalizable intelligent systems.

Author Metrics:

Dr. Chao Yuan has established himself as a prolific researcher in the field of robust machine learning and nonlinear metric learning. He has authored over 17 high-impact research papers in prestigious international journals such as Knowledge-Based Systems, Information Sciences, Neural Networks, and Neurocomputing, many of which are published in top-tier (Q1, CAS Zone 1) journals with impact factors ranging from 5.3 to 8.8. He has contributed as a first author or co-first author in multiple publications. His work has garnered significant academic attention and citations, reflecting his influence in the field. He actively collaborates with renowned scholars and is also listed as a co-inventor on a Chinese invention patent. His research contributions demonstrate both depth and consistency in advancing the theoretical and practical dimensions of machine learning.

Awards and Honors:

Dr. Chao Yuan has received several prestigious accolades recognizing his research excellence and academic impact. He is the principal investigator of the National Natural Science Foundation of China (NSFC) Youth Project, which focuses on Riemannian manifold learning for image set classification. He was also selected for the Guangdong Province Outstanding Young Scientific Research Talent International Training Program, which supported his year-long academic visit to Durham University, UK. This visit enabled interdisciplinary collaboration in biologically inspired swarm intelligence and robotics. Additionally, Dr. Yuan has participated in multiple nationally funded key projects related to sparse signal reconstruction, low-power Internet of Things systems, and intelligent spectral analysis. His achievements highlight his innovation, academic leadership, and international research visibility, contributing significantly to China’s frontier research in artificial intelligence and applied mathematics.

Publication Top Notes

1.  Mixture correntropy-based robust distance metric learning for classification

~ Authors: Chao Yuan, Changsheng Zhou, Jigen Peng, Haiyang Li
~ Journal: Knowledge-Based Systems, 2024, Volume 295, Article 111791, Pages 1–20
~Impact Factor: 8.8 (CAS Zone 1)

Summary:
This paper proposes a novel distance metric learning algorithm using mixture correntropy to handle non-Gaussian noise and outliers in classification tasks. It demonstrates improved robustness and accuracy compared to existing methods, especially in noisy and real-world datasets.

2. Correntropy-based metric for robust twin support vector machine

~ Authors: Chao Yuan, Liming Yang, Ping Sun
~Journal: Information Sciences, 2021, Volume 545(1), Pages 82–101
~ Impact Factor: 8.1 (CAS Zone 1)

Summary:
This work integrates correntropy into Twin Support Vector Machines (TWSVM), resulting in a classifier that is more resistant to noise and outliers. The model exhibits better generalization and classification performance on challenging datasets.

3. Robust twin extreme learning machines with correntropy-based metric

~ Authors: Chao Yuan, Liming Yang
~ Journal: Knowledge-Based Systems, 2021, Volume 214, Article 106707, Pages 1–15
~Impact Factor: 8.8 (CAS Zone 1)

Summary:
The authors enhance Twin Extreme Learning Machines (TELM) by incorporating a correntropy-based loss function, making them more robust for classification tasks in the presence of noisy labels and outliers.

4. Capped L2,p-norm metric based robust least squares twin support vector machine for pattern classification

~  Authors: Chao Yuan, Liming Yang
~ Journal: Neural Networks, 2021, Volume 142, Pages 457–478
~ Impact Factor: 7.8 (CAS Zone 1)

Summary:
This paper introduces a capped L2,p-norm-based metric into the Least Squares Twin SVM framework, enhancing robustness by mitigating the influence of noisy and redundant samples. It shows superior classification accuracy across benchmark datasets.

5. Large margin projection-based multi-metric learning for classification

~  Authors: Chao Yuan, Liming Yang
~  Journal: Knowledge-Based Systems, 2022, Volume 243, Article 108481, Pages 1–15

Summary:  This research presents a multi-metric learning approach based on large-margin projections that dynamically adjusts distance metrics for different data subspaces. The method significantly enhances classification accuracy and adaptability to diverse data distributions.

Conclusion

Dr. Chao Yuan embodies the essence of a next-generation AI researcher: technically proficient, globally connected, and impact-oriented. His innovative contributions to robust machine learning, adaptive classification models, and interpretable AI systems place him among the top-tier young researchers globally.

Verdict:

Highly recommended for the Best Researcher Award in Machine Learning, recognizing both his scientific excellence and future research potential.

Qinglai Wei | Self-Learning Systems | Best Researcher Award

Prof. Dr. Qinglai Wei | Self-Learning Systems | Best Researcher Award 

Associate Director, at Institute of Automation, Chinese Academy of Sciences, China.

Professor Qinglai Wei is a distinguished researcher and educator specializing in control systems, computational intelligence, and learning-based optimization. Serving as the Associate Director at The State Key Laboratory for Management and Control of Complex Systems, Chinese Academy of Sciences, he has made significant contributions to adaptive dynamic programming, nonlinear control, and reinforcement learning. With an illustrious academic journey from Northeastern University and rich professional experience, Prof. Wei has authored numerous influential papers, books, and book chapters. His awards include multiple IEEE honors and recognition as a Clarivate Highly Cited Researcher. He is a prominent figure in advancing intelligent control systems and their applications in complex scenarios.

Professional Profile

Scopus

Google Scholar

Education 🎓

  • Ph.D. in Control Theory and Control Engineering (2009): Northeastern University, China. Advised by Prof. Huaguang Zhang, his research focused on intelligent control systems.
  • M.S. in Control Theory and Control Engineering (2005): Northeastern University, China, under Prof. Xianwen Gao’s mentorship.
  • B.S. in Automation (2002): Northeastern University, China, advised by Baodong Xu.
    These academic milestones laid the foundation for his expertise in adaptive dynamic programming and intelligent systems.

Professional Experience 💼

  • Associate Director (2018–Present): The State Key Laboratory for Management and Control of Complex Systems, Chinese Academy of Sciences.
  • Professor (2016–Present): The State Key Laboratory and the School of Artificial Intelligence, University of Chinese Academy of Sciences.
  • Visiting Scholar roles at University of Rhode Island (2018) and University of Texas at Arlington (2014) reflect his international collaboration and academic outreach.
    Earlier roles include Associate and Assistant Professor positions at The State Key Laboratory, showcasing steady growth in his academic career.

Research Interests 🔬

Prof. Wei’s research spans:

  • Computational Intelligence & Intelligent Control
  • Learning Control & Reinforcement Learning
  • Optimal & Nonlinear Control
  • Adaptive Dynamic Programming
    Applications include process control, smart grids, and multi-agent systems. His innovative methods continue to drive advancements in control theory and intelligent systems.

Awards 🏆

Prof. Wei’s excellence is marked by accolades like:

  • Best Paper Awards (2023 & 2022): International CSIS-IAC and China Automation Congress.
  • IEEE Outstanding Paper Awards (2018): Recognition for impactful contributions to the IEEE journals.
  • Highly Cited Researcher (2018 & 2019): By Clarivate Analytics for his influential publications.
    Other honors include National Natural Science Foundation Awards and Young Researcher Awards, emphasizing his leadership in the field.

Top Noted Publications 📚

  • “Learning and Controlling Multiscale Dynamics in Spiking Neural Networks” (2024, IEEE Transactions on Cybernetics): This study employs Recursive Least Square (RLS) modifications to manage multiscale dynamics in spiking neural networks. It advances neural control methods for adaptive tasks in dynamic environments【8】.
  • “Event-Triggered Robust Parallel Optimal Consensus Control for Multiagent Systems” (2024, IEEE/CAA Journal of Automatica Sinica): This paper focuses on event-triggered mechanisms to ensure robust consensus in multiagent systems under parallel optimal control.
  • “Primal-Dual Adaptive Dynamic Programming for Nonlinear Systems” (2024, Automatica): A framework using primal-dual adaptive dynamic programming tackles the stabilization and optimization of nonlinear systems.
  • “Class-Incremental Learning with Balanced Embedding Discrimination” (2024, Neural Networks): This work enhances class-incremental learning by introducing techniques to balance embeddings and improve discrimination among new and existing classes.

Conclusion

Qinglai Wei is exceptionally suited for the Research for Best Researcher Award. His prolific contributions to control theory, computational intelligence, and reinforcement learning, combined with his global recognition and leadership, exemplify his stature as a world-class researcher. With a proven track record of innovative research, impactful publications, and numerous accolades, he stands out as a strong candidate for this prestigious honor. Continued expansion into interdisciplinary collaborations and mentorship initiatives will further solidify his legacy as a pioneering researcher.