Guangli Wu – Video Summarization
prof Dr. Guangli Wu distinguished academic and researcher in the field Video summarization. The existence of software vulnerabilities will cause serious network attacks and information leakage problems. Timely and accurate detection of vulnerabilities in software has become a research focus on the security field. Most existing work only considers instruction-level features, which to some extent overlooks certain syntax and semantic information in the assembly code segments, affecting the accuracy of the detection model. In this paper, we propose a binary code vulnerability detection model based on multi-level feature fusion. The model considers both word-level features and instruction-level features. In order to solve the problem that traditional text embedding methods cannot handle polysemy, this paper uses the Embeddings from Language Models (ELMo) model to obtain dynamic word vectors containing word semantics and other information. Considering the grammatical structure in the assembly code segment, the model randomly embeds the normalized assembly code segment to represent it. Then the model uses bidirectional Gated Recurrent Unit (GRU) to extract word-level sequence features and instruction-level sequence features respectively.
Eduvation
RESEARCH INTEREST
⚫ Video Summarization
⚫ Temporal Language Localization in videos
⚫ Botnet Detection
⚫ Binary Code Vulnerability Detection
⚫ Video Abnormal Event Detection
FUND PROJECTS
1. Natural Science Foundation of Gansu Province (17JR5RA161, 21JR7RA570)
2. Gansu University of Political Science and Law Major Scientific Research and Innovation Projects
(GZF2020XZDA03)
3. Young Doctoral Fund Project of Higher Education Institutions in Gansu Province (2022QB-123)
4. Gansu Province Higher Education Innovation Fund Project (2017A-068)
5. University-level Innovative Research Team of Gansu University of Political Science and Law
6. Longyuan Youth Innovation and Entrepreneurship Talent Project (2022QB-123)
MAIN SCIENTIFIC PUBLICATIONS
1. Guangli Wu,ShengTao Wang,Shipeng Xu. “Feature fusion over hyperbolic graph convolution networks for
video summarization.” IET Computer Vision,2023.
2. Guangli Wu,Tongjie Xu. “Video Moment Localization Network Based on Text Multi-semantic Clues
Guidance.” Advances in Electrical and Computer Engineering,2023,23(3):85-92.
3. Guangli Wu,Huili Tang. “Binary Code Vulnerability Detection Based on Multi-Level Feature Fusion.” IEEE
Access,2023,11: 63904-63915.
4. Guangli Wu,Shanshan Song,Leiting Li. “Video Summarization Generation Model Based on Transformer
and Deep Reinforcement Learning.” in 2023 8th International Conference on Computer and
Communication Systems (ICCCS). IEEE, 2023: 916-921.
5. Guangli Wu,Shengtao Wang,Liping Liu. “Fast Video Summary Generation Based On Low Rank Tensor
Decomposition.” IEEE Access,2021,9:127917-127926.
6. Guangli Wu,Zhenzhou Guo,Mianzhao Wang,Leiting Li and Chengxiang Wang. “Video Abnormal Event
Detection Based on CNN and Multiple Instance Learning.” in twelfth international conference on signal
processing systems. SPIE,2021:134-139.
7. Guangli Wu,Zhenzhou Guo,Leiting Li and Chengxiang Wang. “Video Abnormal Event Detection Based on
CNN and LSTM.” in 2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP).
IEEE,2020: 334-338.
8. Guangli WU,Leiting LI,Zhenzhou GUO,Chengxiang WANG and Yanpeng, YAO. “Video summarization
Based on ListNet Scoring Mechanism.” in 2020 5th International Conference on Computer and
Communication Systems (ICCCS). IEEE,2020: 281-285.
9. Guangli WU,Liping LIU,Chen Zhang and Dengtai TAN. “Video Abnormal Event Detection Based on ELM.”
in 2019 IEEE 4th International Conference on Signal and Image Processing (ICSIP).IEEE,2019: 367-371