Tzu-Chien Wang | AI | Best Researcher Award

Assist. Prof. Dr. Tzu-Chien Wang | AI | Best Researcher Award

Tzu-Chien Wang at Department of Computer Science and Information Management Soochow University, Taiwan

Dr. Tzu-Chien Wang is an Assistant Professor in the Department of Computer Science and Information Management at Soochow University. He specializes in artificial intelligence, data mining, decision support systems, and process improvement techniques. With a strong background in machine learning, natural language processing, and predictive modeling, he has contributed significantly to both academia and industry by developing proof-of-concept models for operational processes.

Professional Profile:

Orcid

Google Scholar

Education Background

Dr. Tzu-Chien Wang earned his Ph.D. in Business Administration from National Taiwan University, where he specialized in data-driven decision-making, artificial intelligence applications, and business intelligence. His doctoral research focused on leveraging machine learning, data mining, and optimization techniques to enhance decision support systems and operational efficiency. His academic training has provided him with a strong foundation in predictive modeling, natural language processing, and process improvement methodologies, which he has effectively applied in both research and industry settings.

Professional Development

Dr. Wang has a diverse professional background, spanning academia, industry, and research institutions. Before joining Soochow University in 2025, he served as an Assistant Professor at Mackay Junior College of Medicine, Nursing, and Management. He also held managerial roles in data development at VisualSoft Information System Co., Ltd. and worked as a Senior Data Analyst at Fubon Life Insurance Co., Ltd. Additionally, he contributed as an Assistant Research Fellow at the Commerce Development Research Institute, focusing on international digital commerce.

Research Focus

His research interests include artificial intelligence, data mining, decision support systems, natural language processing, optimization, clustering, classification, and predictive model building. He is particularly engaged in developing AI-driven solutions for business intelligence, healthcare applications, and digital transformation.

Author Metrics:

Dr. Wang has published extensively in AI, data analytics, and business intelligence. His research contributions can be found on Google Scholar, reflecting his impact on data science and AI applications.

Awards and Honors:

  • High-Age Health Smart Medical Care Industry-Academia Alliance, National Science and Technology Council, Taiwan (2025–2028)

  • AI+BI Agile Development Data Platform Project, Ministry of Economic Affairs, Taiwan (2022)

  • Consumer Data-Driven Precision R&D and Manufacturing (C2M) Promotion Project, Bureau of Energy, Taiwan (2021)

Publication Top Notes

1. Deep Learning-Based Prediction and Revenue Optimization for Online Platform User Journeys

  • Author: T.C. Wang
  • Journal: Quantitative Finance and Economics (2024)
  • Type: Research Article
  • Citations: 6
  • Summary: This study utilizes deep learning techniques to predict user behavior and optimize revenue generation on online platforms, improving personalized recommendations and business strategies.

2. An Integrated Data-Driven Procedure for Product Specification Recommendation Optimization with LDA-LightGBM and QFD

  • Authors: T.C. Wang, R.S. Guo, C. Chen
  • Journal: Sustainability (2023)
  • Type: Research Article
  • Citations: 5
  • Summary: This research presents a hybrid framework combining Latent Dirichlet Allocation (LDA), LightGBM, and Quality Function Deployment (QFD) to optimize product specification recommendations, improving efficiency in sustainable manufacturing.

3. Integrating Latent Dirichlet Allocation and Gradient Boosting Tree Methodology for Insurance Product Development Recommendation

  • Authors: W.Y. Chen, T.C. Wang, R.S. Guo, C. Chen
  • Conference: Proceedings of the 9th International Conference on Big Data Analytics (ICBDA) (2024)
  • Type: Conference Paper
  • Citations: 1
  • Summary: This paper integrates LDA and Gradient Boosting Trees to refine insurance product development recommendations, offering a data-driven approach for personalized insurance solutions.

4. Data Mining Methods to Support C2M Product-Service Systems Design and Recommendation System Based on User Value

  • Authors: T.C. Wang, R.S. Guo, C. Chen
  • Conference: 2022 Portland International Conference on Management of Engineering and Technology (PICMET)
  • Type: Conference Paper
  • Citations: 1
  • Summary: This study explores data mining techniques to enhance Consumer-to-Manufacturer (C2M) product-service system design, optimizing recommendation systems based on user value analysis.

5. Customer Demand Evaluation Method

  • Author: T.C. Wang
  • Patent: TW Patent TW202,414,306 A (2024)
  • Type: Patent
  • Summary: This patent presents a novel method for evaluating customer demand using AI-driven analytics, enhancing precision in product development and market segmentation.

Conclusion

Dr. Tzu-Chien Wang is a strong candidate for the Best Researcher Award, given his expertise in AI, machine learning, and business intelligence, along with his demonstrated contributions to academia and industry. His innovative research, patents, and funded projects underscore his impact. By expanding global collaborations, diversifying his research themes, and increasing engagement in AI policy and ethics, he can further solidify his standing as a leading researcher in artificial intelligence

Yu Sha | Deep Learning | Best Researcher Award

Dr. Yu Sha | Deep Learning | Best Researcher Award

Yu Sha at Xidian University, China.

Yu Sha is a doctoral researcher specializing in artificial intelligence applications for cavitation detection and intensity recognition. He is pursuing a Doctor of Engineering at Xidian University, China, and was a visiting PhD student at the Frankfurt Institute for Advanced Studies, Germany. His research focuses on AI-driven fault detection in industrial systems, with multiple publications, patents, and academic honors to his name.

Professional Profile:

Scopus

Google Scholar

Education Background

1.  Xidian University, China (2019 – Present)

    • Ph.D. in Computer Science and Technology (College of Artificial Intelligence)
    • Research Focus: Cavitation detection and intensity recognition via deep learning
    • Anticipated Graduation: June 2024

2.  Frankfurt Institute for Advanced Studies, Germany (2020 – 2022)

    • Visiting PhD Researcher (Cavitation and leakage detection using AI)

3.  Lanzhou University of Technology, China (2015 – 2019)

    • B.Sc. in Information and Computing Science
    • Ranked 1st out of 54 students

Professional Development

Yu Sha has contributed to multiple research projects at Xidian University, including AI-driven battlefield situation analysis and decision-making. His work at the Frankfurt Institute for Advanced Studies focused on AI-based cavitation and leakage detection in large-scale pump and pipeline systems. His research expertise extends to deep learning, fault diagnosis in industrial systems, and reinforcement learning.

Research Focus

  • AI-driven cavitation detection and intensity recognition
  • Fault diagnosis and predictive maintenance in industrial systems
  • Deep learning and reinforcement learning applications in engineering

Author Metrics:

  • Publications: Articles accepted in high-impact journals like Machine Intelligence Research and Mechanical Systems and Signal Processing.
  • Conferences: Research presented at ACM SIGKDD and other international venues.
  • Patents: Multiple invention patents related to cavitation detection, face aging estimation, and heart rate estimation

Awards and Honors:

  • Outstanding Doctoral Student, Xidian University (2021, 2022)
  • Multiple Graduate Student Academic Scholarships (First & Second Level)
  • National Encouragement Scholarship (2016, 2017)
  • First Prize in multiple mathematical modeling and AI competitions, including MCM/ICM, MathorCup, and Teddy Cup Data Mining Challenge

Publication Top Notes

1. A Multi-Task Learning for Cavitation Detection and Cavitation Intensity Recognition of Valve Acoustic Signals

  • Authors: Yu Sha, Johannes Faber, Shuiping Gou, Bo Liu, Wei Li, Stefan Schramm, Horst Stoecker, Thomas Steckenreiter, Domagoj Vnucec, Nadine Wetzstein, Andreas Widl, Kai Zhou
  • Published In: Engineering Applications of Artificial Intelligence, Volume 113, August 2022, Article 104904
  • DOI: 10.1016/j.engappai.2022.104904
  • Publisher: Elsevier Ltd.
  • Abstract: The paper proposes a novel multi-task learning framework using 1-D double hierarchical residual networks (1-D DHRN) for simultaneous cavitation detection and cavitation intensity recognition in valve acoustic signals. The approach addresses challenges such as limited sample sizes and poor separability of cavitation states by employing data augmentation techniques and advanced neural network architectures. The framework demonstrated high prediction accuracies across multiple datasets, outperforming other deep learning models and conventional methods.
  • Access: The full paper is available at https://www.sciencedirect.com/science/article/pii/S0952197622001361

2. An Acoustic Signal Cavitation Detection Framework Based on XGBoost with Adaptive Selection Feature Engineering

  • Authors: Yu Sha, Johannes Faber, Shuiping Gou, Bo Liu, Wei Li, Stefan Schramm, Horst Stoecker, Thomas Steckenreiter, Domagoj Vnucec, Nadine Wetzstein, Andreas Widl, Kai Zhou
  • Published In: Measurement, Volume 192, June 2022, Article 110897
  • DOI: 10.1016/j.measurement.2022.110897
  • Publisher: Elsevier Ltd.
  • Abstract: This study introduces a framework combining XGBoost with adaptive selection feature engineering (ASFE) for detecting cavitation in valves using acoustic signals. The methodology includes data augmentation through a non-overlapping sliding window, feature extraction using fast Fourier transform (FFT), and adaptive feature engineering to enhance input features for the XGBoost algorithm. The framework achieved satisfactory prediction performance in both binary and four-class classifications, outperforming traditional XGBoost models.
  • Access: The full paper is available at https://www.sciencedirect.com/science/article/pii/S0263224122001798

3. Regional-Local Adversarially Learned One-Class Classifier Anomalous Sound Detection in Global Long-Term Space

  • Authors: Yu Sha, Shuiping Gou, Johannes Faber, Bo Liu, Wei Li, Stefan Schramm, Horst Stoecker, Thomas Steckenreiter, Domagoj Vnucec, Nadine Wetzstein, Andreas Widl, Kai Zhou
  • Published In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, August 2022
  • DOI: 10.1145/3534678.3539133
  • Publisher: Association for Computing Machinery (ACM)
  • Abstract: This paper introduces a multi-pattern adversarial learning one-class classification framework for anomalous sound detection (ASD) in mechanical equipment monitoring. The framework utilizes two auto-encoding generators to reconstruct normal acoustic data patterns, extending the discriminator’s role to distinguish between regional and local pattern reconstructions. A global filter layer is also presented to capture long-term interactions in the frequency domain without human priors. The proposed method demonstrated superior performance on four real-world datasets from different industrial domains, outperforming recent state-of-the-art ASD methods.
  • Access: The full paper is available at https://dl.acm.org/doi/10.1145/3534678.3539133

4. A Study on Small Magnitude Seismic Phase Identification Using 1D Deep Residual Neural Network

  • Authors: Wei Li, Megha Chakraborty, Yu Sha, Kai Zhou, Johannes Faber, Georg Rümpker, Horst Stöcker, Nishtha Srivastava
  • Published In: Artificial Intelligence in Geosciences, Volume 3, December 2022, Pages 115-122
  • DOI: 10.1016/j.aiig.2022.10.002
  • Publisher: KeAi Publishing Communications Ltd.
  • Abstract: This study develops a 1D deep Residual Neural Network (ResNet) to address the challenges of seismic signal detection and phase identification, particularly for small magnitude events or signals with low signal-to-noise ratios. The proposed method was trained and tested on datasets from the Southern California Seismic Network, demonstrating high accuracy and robustness in identifying seismic phases, thereby offering a valuable tool for seismic monitoring and analysis.
  • Access: The full paper is available at https://www.sciencedirect.com/science/article/pii/S2666544122000284

5. Deep Learning-Based Small Magnitude Earthquake Detection and Seismic Phase Classification

  • Authors: Wei Li, Yu Sha, Kai Zhou, Johannes Faber, Georg Ruempker, Horst Stoecker, Nishtha Srivastava
  • Published In: arXiv preprint arXiv:2204.02870, April 2022
  • DOI: N/A
  • Publisher: arXiv
  • Abstract: This paper investigates two deep learning-based models, namely 1D

Conclusion

Dr. Yu Sha is a highly deserving candidate for the Best Researcher Award due to his pioneering contributions to AI-driven cavitation detection, deep learning applications, and fault diagnosis in industrial systems. His strong academic record, international exposure, high-impact publications, and patent portfolio make him a standout researcher in deep learning for industrial applications. With further industry collaborations and expanded leadership roles, he could solidify his reputation as a global leader in AI-based fault detection.